The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas. In this paper, based on 320 groups of soil and groundwater samples collected at the same time, geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil. From May to August, as the nitrification of groundwater is dominant, the average concentration of nitrate nitrogen is 34.80 mg/L; The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July, and the variation coefficient decreased sharply and then increased in August. There is a high correlation between the nitrate nitrogen in groundwater and soil in July, and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July. From May to August, the area of low groundwater nitrate nitrogen in 0–5 mg/L and 5–10 mg/L decreased from 10.97% to 0, and the proportion of high-value area (greater than 70 mg/L) increased from 21.19% to 27.29%. Nitrate nitrogen is the main factor affecting the quality of groundwater. The correlation analysis of nitrate nitrogen in groundwater, nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay. The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area, which has a high consistency with the high value areas of soil nitrate distribution from July to August, and a high difference with the spatial position of soil ammonia nitrogen distribution in August.
Publications
- Article type
- Year
Article type
Year
Open Access
Research Article
Issue
Journal of Groundwater Science and Engineering 2023, 11(1): 37-46
Published: 20 March 2023
Downloads:79
Total 1