Human Action Recognition (HAR) attempts to recognize the human action from images and videos. The major challenge in HAR is the design of an action descriptor that makes the HAR system robust for different environments. A novel action descriptor is proposed in this study, based on two independent spatial and spectral filters. The proposed descriptor uses a Difference of Gaussian (DoG) filter to extract scale-invariant features and a Difference of Wavelet (DoW) filter to extract spectral information. To create a composite feature vector for a particular test action picture, the Discriminant of Guassian (DoG) and Difference of Wavelet (DoW) features are combined. Linear Discriminant Analysis (LDA), a widely used dimensionality reduction technique, is also used to eliminate duplicate data. Finally, a closest neighbor method is used to classify the dataset. Weizmann and UCF 11 datasets were used to run extensive simulations of the suggested strategy, and the accuracy assessed after the simulations were run on Weizmann datasets for five-fold cross validation is shown to perform well. The average accuracy of DoG + DoW is observed as 83.6635% while the average accuracy of Discrinanat of Guassian (DoG) and Difference of Wavelet (DoW) is observed as 80.2312% and 77.4215%, respectively. The average accuracy measured after the simulation of proposed methods over UCF 11 action dataset for five-fold cross validation DoG + DoW is observed as 62.5231% while the average accuracy of Difference of Guassian (DoG) and Difference of Wavelet (DoW) is observed as 60.3214% and 58.1247%, respectively. From the above accuracy observations, the accuracy of Weizmann is high compared to the accuracy of UCF 11, hence verifying the effectiveness in the improvisation of recognition accuracy.
- Article type
- Year
- Co-author
The development of hand gesture recognition systems has gained more attention in recent days, due to its support of modern human-computer interfaces. Moreover, sign language recognition is mainly developed for enabling communication between deaf and dumb people. In conventional works, various image processing techniques like segmentation, optimization, and classification are deployed for hand gesture recognition. Still, it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption, increased false positives, error rate, and misclassification outputs. Hence, this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques. During image segmentation, skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion. Then, the Heuristic Manta-ray Foraging Optimization (HMFO) technique is employed for optimally selecting the features by computing the best fitness value. Moreover, the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate. Finally, an Adaptive Extreme Learning Machine (AELM) based classification technique is employed for predicting the recognition output. During results validation, various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.