Sort:
Open Access Full Length Article Issue
Circulating exosome-like vesicles of humans with nondiabetic obesity impaired islet β-cell proliferation, which was associated with decreased Omentin-1 protein cargo
Genes & Diseases 2022, 9(4): 1099-1113
Published: 02 January 2021
Abstract PDF (2.3 MB) Collect
Downloads:5

The regulation of β-cell mass in the status of nondiabetic obesity remains not well understood. We aimed to investigate the role of circulating exosome-like vesicles (ELVs) isolated from humans with simple obesity in the regulation of islet β-cell mass. Between June 2017 and July 2019, 81 subjects with simple obesity and 102 healthy volunteers with normal weight were recruited. ELVs were isolated by ultra-centrifugation. The proliferations of β-cells and islets were measured by 5-ethynl-2′-deoxyuridine (EdU). Protein components in ELVs were identified by Quantitative Proteomic Analysis and verified by Western blot and ELISA. The role of specific exosomal protein was analyzed by gain-of-function approach in ELVs released by 3T3-L1 preadipocytes. Circulating ELVs from subjects with simple obesity inhibited β-cell proliferation in vitro without affecting its apoptosis, secretion, and inflammation. The protein levels of Rictor and Omentin-1 were downregulated in circulating ELVs from subjects with simple obesity and associated with the obesity-linked pathologic conditions. The ELV-carried Omentin-1 and Omentin-1 protein per se were validated to increase β-cell proliferation and activate Akt signaling pathway. Moreover, Omentin-1 in ELVs was downregulated by insulin. The circulating ELVs may act as a negative regulator for β-cell mass in nondiabetic obesity through inhibiting β-cell proliferation. This effect was associated with downregulated Omentin-1 protein in ELVs. This newly identified ELV-carried protein could be a mediator linking insulin resistance to impaired β-cell proliferation and a new potential target for increasing β-cell mass in obesity and T2DM.

Open Access Full Length Article Issue
Hippocampal overexpression of TREM2 ameliorates high fat diet induced cognitive impairment and modulates phenotypic polarization of the microglia
Genes & Diseases 2022, 9(2): 401-414
Published: 21 May 2020
Abstract PDF (4.1 MB) Collect
Downloads:3

Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common pathophysiological features. Rare variants of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of developing AD, suggesting the involvement of TREM2 and innate immunity in AD development. It is still unknown whether TREM2 is related to cognitive impairment in T2DM. Here, we investigated the effects of the hippocampal overexpression of TREM2 on cognitive in long-term high-fat diet (HFD)-fed mice. Male C57BL/6J mice were maintained on HFD for 50 weeks. TREM2 was overexpressed in the hippocampus 36 weeks after HFD feeding using adeno-associated virus vector (AAV)-mediated gene delivery. The results showed that the HFD feeding induced rapid and persistent weight gain, glucose intolerance and significant impairments in learning and memory. Compared with AAV-con, AAV-TREM2 significantly ameliorated cognitive impairment without altering body weight and glucose homeostasis in HFD mice. The overexpression of TREM2 upregulated the synaptic proteins spinophilin, PSD95 and synaptophysin, suggesting the improvement in synaptic transmission. Dendritic complexity and spine density in the CA1 region were rescued after TREM2 overexpression. Furthermore, TREM2 markedly increased the number of iba-1/Arg-1-positive microglia in the hippocampus, suppressed neuroinflammation and microglial activation. In sum, hippocampal TREM2 plays an important role in improving HFD-induced cognitive dysfunction and promoting microglial polarization towards the M2 anti-inflammatory phenotype. Our study also suggests that TREM2 might be a novel target for the intervention of obesity/diabetes-associated cognitive decline.

Open Access Original Article Issue
CMHX008, a PPARγ partial agonist, enhances insulin sensitivity with minor influences on bone loss
Genes & Diseases 2018, 5(3): 290-299
Published: 06 June 2018
Abstract PDF (2.3 MB) Collect
Downloads:2

Traditional thiazolidinediones (TZDs), such as rosiglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) potent agonists that can be used to treat type 2 diabetes but carry unwanted effects, including increased risk for fracture. The present work aimed to compare the insulin-sensitizing efficacies and bone-loss side effects of CMHX008, a novel TZDs-like PPARγ partial agonist, with those of rosiglitazone. A TR-FRET PPARγ competitive binding assay was used to compare the binding affinity between CMHX008 and rosiglitazone. Mice were administered vehicle, CMHX008 or rosiglitazone for 16 weeks. Mesenchymal stem cells (MSCs) were used to examine differences in differentiation into osteoblasts after compounds treatment. TR-FRET showed lower affinity to PPARγ by CMHX008 compared with rosiglitazone. Mice treated with CMHX008 showed insulin sensitization similar to that of mice treated with rosiglitazone, which was related to the significant inhibition of PPARγ Ser273 phosphorylation and improved insulin sensitivity by facilitating the phosphorylation of insulin receptor and Akt in adipose tissues. Micro-CT and histomorphometric analyses demonstrated that the degree of trabecular bone loss after treatment with CMHX008 was weaker than that observed with rosiglitazone, as evidenced by consistent changes in BV/TV, Tb.N, Tb.Th, Tb.Sp, and the mineral apposition rate. MSCs treated with CMHX008 showed higher ALP activity and mRNA levels of bone formation markers than did cells treated with rosiglitazone in the osteoblast differentiation test. Thus, CMHX008 showed insulin-sensitizing effects similar to those of rosiglitazone with a lower risk of bone loss, suggesting that PPARγ sparing eliminates the skeletal side effects of TZDs while maintaining their insulin-sensitizing properties.

Open Access Full Length Article Issue
Neonatal overfeeding in mice aggravates the development of methionine and choline-deficient diet-induced steatohepatitis in adulthood
Genes & Diseases 2019, 6(1): 68-77
Published: 05 January 2018
Abstract PDF (2.1 MB) Collect
Downloads:2

Overfeeding in early life is associated with obesity and insulin resistance in adulthood. In the present study, a well-characterized mouse model was used to investigate whether neonatal overfeeding increases susceptibility to the development of non-alcoholic steatohepatitis (NASH) following feeding with a methionine and choline- deficient (MCD) diet. Neonatal overfeeding was induced by adjusting litters to 3 pups per dam (small litter size, SL) in contrast to 10 pups per dam as control (normal litter size, NL). At 11 weeks of age, mice were fed with standard (S) or a methionine and choline-deficient (MCD) diet for 4 weeks. Glucose tolerance tests, tissue staining with haematoxylin and eosin, oil-red O and immunohistochemistry for F4/80, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed. Compared with NL mice, SL mice exhibited higher body weight gain from 2 weeks of age throughout adulthood, and more profound glucose intolerance as adults. Sterol regulatory element-binding protein 1c and fatty acid synthase mRNA expression levels in liver were upregulated in SL mice at 3 weeks of age. MCD diet induced typical NASH, especially in SL-MCD mice, evidenced by marked fat accumulation, macrovescular steatosis, ballooned hepatocytes, inflammatory cells infiltration and tumour necrosis factor-α mRNA upregulation in the liver, as well as increased alanine aminotransferase and aspartate aminotransferase levels in the serum. There were no significant differences in liver fibrosis in all groups. Overfeeding during early life exhibited effect with administration of MCD diet in inducing adverse effects on the metabolic function and in promoting the progression of NASH in mice, possibly mediated through dysregulated lipid metabolism in hepatocytes and aggravated hepatic inflammation.

Total 4