Cancer stem cells (CSCs) play a crucial role in tumor initiation, recurrence, metastasis, and drug resistance. However, the current understanding of CSCs in hepatocellular carcinoma (HCC) remains incomplete. Through a comprehensive analysis of the database, it has been observed that 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), a critical enzyme involved in cholesterol synthesis, is up-regulated in HCC tissues and liver CSCs. Moreover, high expression of HMGCR is associated with a poor prognosis in patients with HCC. Functionally, HMGCR promotes the stemness and metastasis of HCC both in vitro and in vivo. By screening various signaling pathway inhibitors, we have determined that HMGCR regulates stemness and metastasis by activating the Hedgehog signaling in HCC. Mechanistically, HMGCR positively correlates with the expression of the Smoothened receptor and facilitates the nuclear translocation of the transcriptional activator GLI family zinc finger 1. Inhibition of the Hedgehog pathway can reverse the stimulatory effects of HMGCR on stemness and metastasis in HCC. Notably, simvastatin, an FDA-approved cholesterol-lowering drug, has been shown to inhibit stemness and metastasis of HCC by targeting HMGCR. Taken together, our findings suggest that HMGCR promotes the regeneration and metastasis of HCC through the activation of Hedgehog signaling, and simvastatin holds the potential for clinical suppression of HCC metastasis.
- Article type
- Year
- Co-author
Liver cancer stem cells were found to rely on glycolysis as the preferred metabolic program. Phosphoenolpyruvate carboxylase 1 (PCK1), a gluconeogenic metabolic enzyme, is down-regulated in hepatocellular carcinoma and is closely related to poor prognosis. The oncogenesis and progression of tumors are closely related to cancer stem cells. It is not completely clear whether the PCK1 deficiency increases the stemness of hepatoma cells and promotes the oncogenesis of hepatocellular carcinoma. Herein, the results showed that PCK1 inhibited the self-renewal property of hepatoma cells, reduced the mRNA level of cancer stem cell markers, and inhibited tumorigenesis. Moreover, PCK1 increased the sensitivity of hepatocellular carcinoma cells to sorafenib. Furthermore, we found that PCK1 activated the Hippo pathway by enhancing the phosphorylation of YAP and inhibiting its nuclear translocation. Verteporfin reduced the stemness of hepatoma cells and promoted the pro-apoptotic effect of sorafenib. Thus, combined treatment with verteporfin and sorafenib may be a potential anti-tumor strategy in hepatocellular carcinoma.
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Spike protein that mediates coronavirus entry into host cells is a major target for COVID-19 vaccines and antibody therapeutics. However, multiple variants of SARS-CoV-2 have emerged, which may potentially compromise vaccine effectiveness. Using a pseudovirus-based assay, we evaluated SARS-CoV-2 cell entry mediated by the viral Spike B.1.617 and B.1.1.7 variants. We also compared the neutralization ability of monoclonal antibodies from convalescent sera and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine) and ZF2001 (RBD-subunit vaccine) against B.1.617 and B.1.1.7 variants. Our results showed that, compared to D614G and B.1.1.7 variants, B.1.617 shows enhanced viral entry and membrane fusion, as well as more resistant to antibody neutralization. These findings have important implications for understanding viral infectivity and for immunization policy against SARS-CoV-2 variants.
Vesicle Protein Sorting 35 (VPS35) is a novel oncogene that promotes tumor growth through the PI3K/AKT signaling in hepatocellular carcinoma (HCC). However, the role of VPS35 in HCC metastasis and the underlying mechanisms remain largely unclear. In this study, we observed that overexpression of VPS35 enhanced hepatoma cell invasion and metastasis by inducing epithelial–mesenchymal transition (EMT)-related gene expression. Conversely, knockout of VPS35 significantly inhibited hepatoma cell migration and invasion. Furthermore, depletion of VPS35 decreased the lung metastasis of HCC in nude mice. By transcriptome analysis, we determined that VPS35 promoted HCC metastasis by activating the Wnt/non-canonical planar cell polarity (PCP) pathway. Mechanistically, VPS35 activated the PCP pathway by regulating membrane sorting and trafficking of Frizzled-2 (FZD2) and ROR1 in hepatoma cells. Collectively, our results indicate that VPS35 promotes HCC metastasis via enhancing the Wnt/PCP signaling, thus providing a potential prognostic marker and therapeutic target for HCC.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative virus of the coronavirus disease 2019 (COVID-19) pandemic. To establish a safe and convenient assay system for studying entry inhibitors and neutralizing antibodies against SARS-CoV-2, we constructed a codon-optimized, full-length C-terminal mutant spike (S) gene of SARS-CoV-2. We generated a luciferase (Luc)-expressing pseudovirus containing the wild-type or mutant S protein of SARS-CoV-2 in the envelope-defective HIV-1 backbone. The key parameters for this pseudovirus-based assay, including the S mutants and virus incubation time, were optimized. This pseudovirus contains a Luc reporter gene that enabled us to easily quantify virus entry into angiotensin-converting enzyme 2 (ACE2)-expressing 293T cells. Cathepsin (Cat)B/L inhibitor E−64d could significantly block SARS-CoV-2 pseudovirus infection in 293T-ACE2 cells. Furthermore, the SARS-CoV-2 spike pseudotyped virus could be neutralized by sera from convalescent COVID-19 patients or recombinant ACE2 with the fused Fc region of human IgG1. Thus, we developed a pseudovirus-based assay for SARS-CoV-2, which will be valuable for evaluating viral entry inhibitors and neutralizing antibodies against this highly pathogenic virus.