Sort:
Open Access Letter Issue
Resilience-assuring hydrogen-powered microgrids
iEnergy 2024, 3 (2): 84-88
Published: 24 July 2024
Abstract PDF (466.8 KB) Collect
Downloads:11

Green hydrogen has shown great potential to power microgrids as a primary source, whereas the resilient operation methodology under extreme events remains an open area. To fill this gap, this letter establishes an operational optimization strategy towards resilient hydrogen-powered microgrids. The frequency and voltage regulation characteristics of primary hydrogen sources under droop control and their electrical-chemical conversion process with nonlinear stack efficiency are accurately modeled by piecewise linear constraints. A resilience-oriented multi-time-slot stochastic optimization model is then formulated for an economic and robust operation under changing uncertainties. Test results show that the new formulation can leverage the primary hydrogen sources to achieve a resilience and safety-assured operation plan, supplying maximum critical loads while significantly reducing the frequency and voltage variations.

Open Access Letter Issue
Secondary control fusion in inverter intensive dynamic microgrids for distribution system resiliency enhancement
iEnergy 2023, 2 (1): 9-13
Published: 01 March 2023
Abstract PDF (564.7 KB) Collect
Downloads:19

Microgrids (MGs) dominated by power electronics interface inverters can augment distribution system resiliency. The interactions among neighboring MGs and the requirements for flexible system network reconfiguration motivate the development of dynamic MGs. To improve the distribution system resiliency in the context of dynamic MGs, this paper proposes the concept of functional fusion of secondary control levels across neighboring dynamic MGs with the integration of multiple compensation terms into the secondary controller in each distributed generator (DG). Moreover, two kinds of consensus-based algorithms with the consideration of communication delays are encompassed to calculate the average values of static and dynamic variables and thereby build an effective communications network among DGs in dynamic MGs. Finally, the effectiveness of the proposed secondary controller is validated using a 9-bus test distribution feeder.

Total 2