Sort:
Regular Paper Issue
MacroTrend: A Write-Efficient Cache Algorithm for NVM-Based Read Cache
Journal of Computer Science and Technology 2022, 37(1): 207-230
Published: 31 January 2022
Abstract Collect

The future storage systems are expected to contain a wide variety of storage media and layers due to the rapid development of NVM (non-volatile memory) techniques. For NVM-based read caches, many kinds of NVM devices cannot stand frequent data updates due to limited write endurance or high energy consumption of writing. However, traditional cache algorithms have to update cached blocks frequently because it is difficult for them to predict long-term popularity according to such limited information about data blocks, such as only a single value or a queue that reflects frequency or recency. In this paper, we propose a new MacroTrend (macroscopic trend) prediction method to discover long-term hot blocks through blocks' macro trends illustrated by their access count histograms. And then a new cache replacement algorithm is designed based on the MacroTrend prediction to greatly reduce the write amount while improving the hit ratio. We conduct extensive experiments driven by a series of real-world traces and find that compared with LRU, MacroTrend can reduce the write amounts of NVM cache devices significantly with similar hit ratios, leading to longer NVM lifetime or less energy consumption.

Regular Paper Issue
Endurable SSD-Based Read Cache for Improving the Performance of Selective Restore from Deduplication Systems
Journal of Computer Science and Technology 2018, 33(1): 58-78
Published: 26 January 2018
Abstract Collect

Deduplication has been commonly used in both enterprise storage systems and cloud storage. To overcome the performance challenge for the selective restore operations of deduplication systems, solid-state-drive-based (i.e., SSD-based) read cache can be deployed for speeding up by caching popular restore contents dynamically. Unfortunately, frequent data updates induced by classical cache schemes (e.g., LRU and LFU) significantly shorten SSDs’ lifetime while slowing down I/O processes in SSDs. To address this problem, we propose a new solution — LOP-Cache — to greatly improve the write durability of SSDs as well as I/O performance by enlarging the proportion of long-term popular (LOP) data among data written into SSD-based cache. LOP-Cache keeps LOP data in the SSD cache for a long time period to decrease the number of cache replacements. Furthermore, it prevents unpopular or unnecessary data in deduplication containers from being written into the SSD cache. We implemented LOP-Cache in a prototype deduplication system to evaluate its performance. Our experimental results indicate that LOP-Cache shortens the latency of selective restore by an average of 37.3% at the cost of a small SSD-based cache with only 5.56% capacity of the deduplicated data. Importantly, LOP-Cache improves SSDs’ lifetime by a factor of 9.77. The evidence shows that LOP-Cache offers a cost-efficient SSD-based read cache solution to boost performance of selective restore for deduplication systems.

Total 2