Sort:
Regular Paper Issue
ovAFLow: Detecting Memory Corruption Bugs with Fuzzing-Based Taint Inference
Journal of Computer Science and Technology 2022, 37(2): 405-422
Published: 31 March 2022
Abstract Collect

Grey-box fuzzing is an effective technology to detect software vulnerabilities, such as memory corruption. Previous fuzzers in detecting memory corruption bugs either use heavy-weight analysis, or use techniques which are not customized for memory corruption detection. In this paper, we propose a novel memory bug guided fuzzer, ovAFLow. To begin with, we broaden the memory corruption targets where we frequently identify bugs. Next, ovAFLow utilizes light-weight and effective methods to build connections between the fuzzing inputs and these corruption targets. Based on the connection results, ovAFLow uses customized techniques to direct the fuzzing process closer to memory corruption. We evaluate ovAFLow against state-of-the-art fuzzers, including AFL (american fuzzy lop), AFLFast, FairFuzz, QSYM, Angora, TIFF, and TortoiseFuzz. The evaluation results show better vulnerability detection ability of ovAFLow, and the performance overhead is acceptable. Moreover, we identify 12 new memory corruption bugs and two CVEs (common vulnerability exposures) with the help of ovAFLow.

Regular Paper Issue
MEBS: Uncovering Memory Life-Cycle Bugs in Operating System Kernels
Journal of Computer Science and Technology 2021, 36(6): 1248-1268
Published: 30 November 2021
Abstract Collect

Allocation, dereferencing, and freeing of memory data in kernels are coherently linked. There widely exist real cases where the correctness of memory is compromised. This incorrectness in kernel memory brings about significant security issues, e.g., information leaking. Though memory allocation, dereferencing, and freeing are closely related, previous work failed to realize they are closely related. In this paper, we study the life-cycle of kernel memory, which consists of allocation, dereferencing, and freeing. Errors in them are called memory life-cycle (MLC) bugs. We propose an in-depth study of MLC bugs and implement a memory life-cycle bug sanitizer (MEBS) for MLC bug detection. Utilizing an inter-procedural global call graph and novel identification approaches, MEBS can reveal memory allocation, dereferencing, and freeing sites in kernels. By constructing a modified define-use chain and examining the errors in the life-cycle, MLC bugs can be identified. Moreover, the experimental results on the latest kernels demonstrate that MEBS can effectively detect MLC bugs, and MEBS can be scaled to different kernels. More than 100 new bugs are exposed in Linux and FreeBSD, and 12 common vulnerabilities and exposures (CVE) are assigned.

Total 2