Sort:
Issue
Large language models and their application in government affairs
Journal of Tsinghua University (Science and Technology) 2024, 64(4): 649-658
Published: 15 April 2024
Abstract PDF (1.1 MB) Collect
Downloads:66
Significance

Since the turn of the 21st century, artificial intelligence (AI) has advanced considerably in many domains, including government affairs. Furthermore, the emergence of deep learning has taken the development of many AI fields, including natural language processing (NLP), to a new level. Language models (LMs) are key research directions of NLP. Referred to as statistical models, LMs were initially used to calculate the probability of a sentence; however, in recent years, there have been substantial developments in large language models (LLMs). Notably, LLM products, such as the generative pretrained transformer (GPT) series, have driven the rapid revolution of large language research. Domestic enterprises have also researched LLMs, for example, Huawei's Pangu and Baidu's enhanced language representation with informative entities (ERNIE) bot. These models have been widely used in language translation, abstract construction, named-entity recognition, text classification, and relationship extraction, among other applications, and in government affairs, finance, biomedicine, and other domains.

Progress

In this study, we observe that improving the efficiency of governance has become one of the core tasks of the government in the era of big data. With the continuous accumulation of government data, traditional statistical models relying on expert experience and local features gradually suffer limitations during application. However, LLMs, which offer the advantages of high flexibility, strong representation ability, and effective results, can rapidly enhance the intelligence level of government services. First, we review the research progress on early LMs, such as statistical LMs and neural network LMs. Subsequently, we focus on the research progress on LLMs, namely the Transformers series, GPT series, and bidirectional encoder representations from transformers (BERT) series. Finally, we introduce the application of LLMs in government affairs, including government text classification, relationship extraction, public opinion risk identification, named-entity recognition, and government question answering. Moreover, we propose that research on LLMs for government affairs must focus on multimodality, correctly benefit from the trend of "model as a service, " focus on high data security, and clarify government responsibility boundaries. Additionally, a technical path for studying LLMs for government affairs has been proposed.

Conclusions and Prospects

The application of LLMs in government affairs mainly focuses on small-scale models, lacking examples of application in large-scale models. Compared with smaller models, large models offer many advantages, including high efficiency, broader application scenarios, and more convenience. These advantages can be understood as follows. In terms of efficiency, large models are usually trained on a large amount of heterogeneous data, thus delivering better performance. In terms of application scenarios, large models gradually support multimodal data, resulting in more diverse application scenarios. In terms of convenience, we emphasize the "pretraining + fine-tuning" mode and the invocation method of interfaces, making LLMs more convenient for research and practical applications. This study also analyzes the issues suffered by LLMs, specifically from the technological and ethical perspectives, which have resulted in a panic to a certain extent. For example, ChatGPT has generated many controversies, including whether the generated files are novel, whether using ChatGPT will lead to plagiarism and ambiguity as to who are property rights owners for the generated files. Overall, it can be said that LLMs are in the stage of vigorous development. As the country promotes research on AI and its application in government affairs, LLMs will play an increasingly crucial role in the field.

Regular Paper Issue
Location and Trajectory Identification from Microblogs
Journal of Computer Science and Technology 2019, 34(4): 727-746
Published: 19 July 2019
Abstract Collect

The rapid development of social networks has resulted in a proliferation of user-generated content (UGC), which can benefit many applications. In this paper, we study the problem of identifying a user’s locations from microblogs, to facilitate effective location-based advertisement and recommendation. Since the location information in a microblog is incomplete, we cannot get an accurate location from a local microblog. As such, we propose a global location identification method, GLITTER. GLITTER combines multiple microblogs of a user and utilizes them to identify the user’s locations. GLITTER not only improves the quality of identifying a user’s location but also supplements the location of a microblog so as to obtain an accurate location of a microblog. To facilitate location identification, GLITTER organizes points of interest (POIs) into a tree structure where leaf nodes are POIs and non-leaf nodes are segments of POIs, e.g., countries, cities, and streets. Using the tree structure, GLITTER first extracts candidate locations from each microblog of a user which correspond to some tree nodes. Then GLITTER aggregates these candidate locations and identifies top-k locations of the user. Using the identified top-k user locations, GLITTER refines the candidate locations and computes top-k locations of each microblog. To achieve high recall, we enable fuzzy matching between locations and microblogs. We propose an incremental algorithm to support dynamic updates of microblogs. We also study how to identify users’ trajectories based on the extracted locations. We propose an effective algorithm to extract high-quality trajectories. Experimental results on real-world datasets show that our method achieves high quality and good performance, and scales well.

Total 2