Tsinghua Science and Technology 2024, 29(1): 66-75
Published: 21 August 2023
Min-max disagreements are an important generalization of the correlation clustering problem (CorCP). It can be defined as follows. Given a marked complete graph , each edge in the graph is marked by a positive label " " or a negative label " " based on the similarity of the connected vertices. The goal is to find a clustering of vertices , so as to minimize the number of disagreements at the vertex with the most disagreements. Here, the disagreements are the positive cut edges and the negative non-cut edges produced by clustering . This paper considers two robust min-max disagreements: min-max disagreements with outliers and min-max disagreements with penalties. Given parameter , we first provide a threshold-based iterative clustering algorithm based on LP-rounding technique, which is a -bi-criteria approximation algorithm for both the min-max disagreements with outliers and the min-max disagreements with outliers on one-sided complete bipartite graphs. Next, we verify that the above algorithm can achieve an approximation ratio of for min-max disagreements with penalties when we set parameter .