Publications
Sort:
Open Access Research paper Issue
Current status and prospects of research on 1,4-dioxane pollution and treatment technologies in the water environment
Journal of Groundwater Science and Engineering 2023, 11 (2): 158-170
Published: 19 April 2023
Abstract PDF (388.3 KB) Collect
Downloads:102

1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2 (probable) human carcinogen. After reviewing recent researches on the pollution status, transport and transformation characteristics of 1,4-dioxane in the water environment, as well as the environmental pollution remediation and treatment technologies, and the status of environmental regulation, this paper addresses that the distribution of 1,4-dioxane in water bodies is significantly correlated with chlorinated hydrocarbon pollutants such as 1,1,1-trichloroethane (1,1,1-TCA) and trichloroethylene (TCE). It is noteworthy that 1,4-dioxane often occurs in symbiosis with 1,1,1-TCA and has a similarity contamination plume distribution to 1,1,1-TCA. The natural attenuation of 1,4-dioxane in groundwater environment is weak, but there is a certain degree of biological oxidation attenuation. Current methods for treating 1,4-dioxane pollution mainly include extraction-treatment technology, advanced oxidation treatment technology, modified biological treatment technology and phytoremediation technology, all of which have their limitations in practical application. Currently, there is no environmental regulation available for the 1,4-dioxane pollution worldwide, and no enforceable standard established for defining the health trigger levels of 1,4-dioxane in drinking water. Research on this contaminant in China is generally limited to the site or laboratory scale, and there are no studies on the environmental risk and quality standards for 1,4-dioxane in the water environment.

Issue
Research on Migration Features of Salt-Fresh Water Interface on the North China Plain
Journal of Groundwater Science and Engineering 2014, 2 (2): 68-79
Published: 28 June 2014
Abstract PDF (3.1 MB) Collect
Downloads:7

Underground water is the important water resources for the North China Plain, but due to long-time exhaustive exploitation, a series of problems about environmental geology including salt water migration appears. The salt groundwater that distributed widely moved downward vertically, triggering a strong impact on the water supply safety in this area; simultaneously, its large storage capacity brought great resources potential. Thus it had practical guiding significance to develop research on migration of salt-fresh water interface in the North China Plain and discuss the space distribution and migration features for improvement of groundwater environment and mitigation of water resource shortage status. This paper described migration features of salt-fresh water interface through changes in boundary line of salt water and fresh water and vertical interface of salt water and found out major causes for migration of salt-fresh water interface in the area were water level difference between salt water and fresh water area, saline concentration difference in salt water and fresh water, stratigraphic structure and artificial skylight based on analysis on the influence factors.

Total 2