Propylene carbonate (PC)-based electrolytes have exhibited significant advantages in boosting the low-temperature discharging of graphite-based Li-ion batteries. However, it is still unclear whether they can improve the charging property and suppress lithium plating. Studying this topic is challenging due to the problem of electrochemical compatibility. To overcome this issue, we introduced graphite with phase defects. The results show that the pouch-type full batteries using PC-based electrolyte exhibit steady performance over 500 cycles and can be reversibly charged over 30 times at −20 °C with an average Coulombic efficiency of 99.95%, while the corresponding value for the conventional ethylene carbonate (EC)-based electrolyte sample is only 31.20%. This indicates that the use of PC-based electrolyte significantly suppresses lithium plating during low-temperature charging. We further demonstrate that the improved performance is mainly attributed to the unique solvation structure, where more

During the last decade, the rapid development of lithium-ion battery (LIB) energy storage systems has provided significant support for the efficient operation of renewable energy stations. In the coming years, the service life demand of energy storage systems will be further increased to 30 years from the current 20 years on the basis of the equivalent service life of renewable energy stations. However, the life of the present LIB is far from meeting such high demand. Therefore, research on the next-generation LIB with ultra-long service life is imminent. Prelithiation technology has been widely studied as an important means to compensate for the initial coulombic efficiency loss and improve the service life of LIBs. This review systematically summarized the different prelithiation methods from anode and cathode electrodes. Moreover, the large-scale industrialization challenge and the possibility of the existing prelithiation technology are analyzed, based on three key parameters: industry compatibility, prelithiation efficiency, and energy density. Finally, the future trends of improvement in LIB performance by other overlithiated cathode materials are presented, which gives a reference for subsequent research.