Sort:
Open Access Original Article Issue
A quick and reliable image-based AI algorithm for evaluating cellular senescence of gastric organoids
Cancer Biology & Medicine 2023, 20 (7): 519-536
Published: 30 June 2023
Abstract PDF (1.8 MB) Collect
Downloads:0
Objective

Organoids are a powerful tool with broad application prospects in biomedicine. Notably, they provide alternatives to animal models for testing potential drugs before clinical trials. However, the number of passages for which organoids maintain cellular vitality ex vivo remains unclear.

Methods

Herein, we constructed 55 gastric organoids from 35 individuals, serially passaged the organoids, and captured microscopic images for phenotypic evaluation. Senescence-associated β-galactosidase (SA-β-Gal), cell diameter in suspension, and gene expression reflecting cell cycle regulation were examined. The YOLOv3 object detection algorithm integrated with a convolutional block attention module (CBAM) was used to evaluate organoid vitality.

Results

SA-β-Gal staining intensity; single-cell diameter; and expression of p15, p16, p21, CCNA2, CCNE2, and LMNB1 reflected the progression of aging in organoids during passaging. The CBAM-YOLOv3 algorithm precisely evaluated aging organoids on the basis of organoid average diameter, organoid number, and number × diameter, and the findings positively correlated with SA-β-Gal staining and single-cell diameter. Organoids derived from normal gastric mucosa had limited passaging ability (passages 1–5), before aging, whereas tumor organoids showed unlimited passaging potential for more than 45 passages (511 days) without showing clear senescence.

Conclusions

Given the lack of indicators for evaluating organoid growth status, we established a reliable approach for integrated analysis of phenotypic parameters that uses an artificial intelligence algorithm to indicate organoid vitality. This method enables precise evaluation of organoid status in biomedical studies and monitoring of living biobanks.

Open Access Review Issue
Recent progress in targeting the sialylated glycan-SIGLEC axis in cancer immunotherapy
Cancer Biology & Medicine 2023, 20 (5): 369-384
Published: 05 June 2023
Abstract PDF (3.6 MB) Collect
Downloads:22

Malignant tumors are complex structures composed of cancer cells and tumor microenvironmental cells. In this complex structure, cells cross-talk and interact, thus jointly promoting cancer development and metastasis. Recently, immunoregulatory molecule-based cancer immunotherapy has greatly improved treatment efficacy for solid cancers, thus enabling some patients to achieve persistent responses or cure. However, owing to the development of drug-resistance and the low response rate, immunotherapy against the available targets PD-1/PD-L1 or CTLA-4 has limited benefits. Although combination therapies have been proposed to enhance the response rate, severe adverse effects are observed. Thus, alternative immune checkpoints must be identified. The SIGLECs are a family of immunoregulatory receptors (known as glyco-immune checkpoints) discovered in recent years. This review systematically describes the molecular characteristics of the SIGLECs, and discusses recent progress in areas including synthetic ligands, monoclonal antibody inhibitors, and Chimeric antigen receptor T (CAR-T) cells, with a focus on available strategies for blocking the sialylated glycan-SIGLEC axis. Targeting glyco-immune checkpoints can expand the scope of immune checkpoints and provide multiple options for new drug development.

Open Access Editorial Issue
Repurposing glucocorticoids as adjuvant reagents for immune checkpoint inhibitors in solid cancers
Cancer Biology & Medicine 2021, 18 (4): 944-948
Published: 01 November 2021
Abstract PDF (148 KB) Collect
Downloads:0
Total 3