Sort:
Open Access Research paper Issue
A dynamic regulation of nitrogen on floret primordia development in wheat
The Crop Journal 2024, 12(1): 271-280
Published: 10 November 2023
Abstract PDF (3.6 MB) Collect
Downloads:1

Nitrogen (N) fertilization is critical for spike and floret development, which affects the number of fertile florets per spike (NFFs). However, the physiological regulation of the floret development process by N fertilization is largely unknown. A high temporal-resolution investigation of floret primordia number and morphology, dry matter, and N availability was conducted under three N fertilization levels: 0 (N0), 120 (N1) and 240 (N2) kg ha−1. Interestingly, fertile florets at anthesis stage were determined by those floret primordia with meiotic ability at booting stage: meiotic ability was a threshold that predicted whether a floret primordium became fertile or abortive florets. Because the developmental rate of the 4th floret primordium in the central spikelet was accelerated and then they acquired meiotic ability, the NFFs increased gradually as N application increased, but the increase range decreased under N2. There were no differences in spike N concentration among treatments, but leaf N concentration was increased in the N1 and N2 treatments. Correspondingly, dry matter accumulation and N content of the leaf and spike in the N1 and N2 treatments was increased as compared to N0. Clearly, optimal N fertilization increased leaf N availability and transport of assimilates to spikes, and allowed more floret primordia to acquire meiotic ability and become fertile florets, finally increasing NFFs. There was no difference in leaf N concentration between N1 and N2 treatment, whereas soil N concentration at 0–60 cm soil layers was higher in N2 than in N1 treatment, implying that there was still some N fertilization that remained unused. Therefore, improving the leaf’s ability to further use N fertilizer is vital for greater NFFs.

Open Access Research paper Issue
Effect of high-nitrogen fertilizer on gliadin and glutenin subproteomes during kernel development in wheat (Triticum aestivum L.)
The Crop Journal 2020, 8(1): 38-52
Published: 18 July 2019
Abstract PDF (1.9 MB) Collect
Downloads:1

Nitrogen (N), a macronutrient essential for plant growth and development, is needed for biosynthesis of protein and starch, which affect grain yield and quality. Application of high-N fertilizer increases plant growth, grain yield, and flour quality. In this study, we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and two-dimensional difference gel electrophoresis (2D-DIGE). Application of high-N fertilizer led to significant increases in gluten macropolymer content, total gliadin and glutenin content, and the accumulation of individual storage protein components. Of 126 differentially accumulated proteins (DAPs) induced by high-N conditions, 24 gliadins, 12 high-molecular-weight glutenins, and 27 low-molecular-weight glutenins were significantly upregulated. DAPs during five kernel developmental stages displayed multiple patterns of accumulation. In particular, gliadins and glutenins showed respectively five and six accumulation patterns. The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.

Total 2