Sort:
Open Access Research paper Issue
Subsurface banding of blended controlled-release urea can optimize rice yields while minimizing yield-scaled greenhouse gas emissions
The Crop Journal 2023, 11 (3): 914-921
Published: 13 November 2022
Abstract PDF (1.2 MB) Collect
Downloads:3

Controlled-release urea (CRU) is widely reported to supply crop nitrogen (N) demand with one basal application, thus effectively replacing split applications of urea without diminishing grain yield and N use efficiency (NUE). However, its use for replacement for high-yield split applications of urea (CK) for rice is untested. In addition, the degree to which greenhouse gas (GHG) emissions in rice systems are affected when CRU is substituted for CK remains unclear. During 2017 and 2018, we sampled plant growth and gas emissions in a rice paddy field treated with three CRU types (sulfur-coated urea [SCU], polymer-coated urea [PCU], and bulk blended CRU [BBU]) applied via two methods (surface broadcasting on the soil and subsurface banding at 5 cm depth), with CK as a control. The three CRUs led to different soil NH4+-N dynamics, and the N supply pattern under BBU was more beneficial for rice seedling establishment than under SCU and PCU, resulting in grain yield and NUE comparable to those under CK. CRU type showed no significant effect on either CH4 emissions or N2O emissions, and broadcast CRUs exhibited significantly higher total GHG emissions than CK. However, banded CRUs significantly reduced the total GHG emissions in comparison with broadcast CRUs, by 9.2% averaged across the two years. Reduced CH4 emissions, particularly during the period prior to the middle drainage, contributed largely to the GHG difference. With comparably high grain yield and low total GHG emissions, banded BBU showed a low yield-scaled GHG (GHG emissions divided by grain yield) comparable to that under CK in both years. Overall, our study suggested that N management synchronized with rice demand and contributing to a high NUE tended to minimize yield-scaled GHG. Broadcast CRU can hardly substitute for CK in terms of either grain yield or GHG emissions, but banded BBU is a promising N management strategy for sustaining rice production while minimizing environmental impacts.

Open Access Research paper Issue
Temporal and spatial variations of carbon isotope signature reveal substantial contribution of bracts and internode assimilates to grain filling of japonica rice
The Crop Journal 2021, 9 (2): 271-281
Published: 10 August 2020
Abstract PDF (2.3 MB) Collect
Downloads:3

Carbon isotope composition (δ13C) of a plant organ is an inherent signature reflecting its physiological property, and thus is used as an integrative index in crop breeding. It is also a non-intrusive method for quantifying the relative contribution of different source organs to grain filling in cereals. Using the samples collected from two-year field and pot experiments with two nitrogen (N) fertilization treatments, we investigated the temporal and spatial variations of δ13C in source organs of leaf, sheath, internode, and bracts, and in sink organ grain. Constitutive nature of δ13C was uncovered, with an order of leaf (−27.84‰) < grain (−27.82‰) < sheath (−27.24‰) < bracts (−26.81‰) < internode (−25.67‰). For different positions of individual organs within the plant, δ13C of the leaf and sheath presented a diminishing trend from the top (flag leaf and its sheath) to the bottom (the last leaf in reverse order and its sheath). No obvious pattern was found for the internode. For temporal variations, δ13C of the leaf and sheath had a peak (the most negative) at 10 days after anthesis (DAA), whereas that of the bracts showed a marked increase at the time point of anthesis, implying a transformation from sink to source organ. By comparing the δ13C in its natural abundance in the water-soluble fractions of the sheath, internode, and bracts with the δ13C in mature grains, the relative contribution of these organs to grain filling was assessed. With reference to the leaf, the internode accounted for as high as 32.64% and 42.56% at 10 DAA and 20 DAA, respectively. Meanwhile, bracts presented a larger contribution than the internode, with superior bracts being higher than inferior bracts. In addition, N topdressing reduced the contribution of the internode and bracts. Our findings clearly proved the actual significance of non-foliar organs of the internode and bracts for rice yield formation, thus extending our basic knowledge of source and sink relations.

Open Access Research paper Issue
Optimal yield-related attributes of irrigated rice for high yield potential based on path analysis and stability analysis
The Crop Journal 2014, 2 (4): 235-243
Published: 14 May 2014
Abstract PDF (669.9 KB) Collect
Downloads:2

Improvement of yield in rice (Oryza sativa L.) is vital for ensuring food security in China. Both rice breeders and growers need an improved understanding of the relationship between yield and yield-related traits. New indica cultivars (53 in 2007 and 48 in 2008) were grown in Taoyuan, Yunnan province, to identify important components contributing to yield. Additionally, two standard indica rice cultivars with similar yield potentials, Ⅱ You 107 (a large-panicle type) and Xieyou 107 (a heavy-panicle type), were planted in Taoyuan, Yunnan province and Nanjing, Jiangsu province, from 2006 to 2008 to evaluate the stability of yield and yield-related attributes. Growth duration (GD), leaf area index (LAI), panicles per m2 (PN), and spikelets per m2 (SM) were significantly and positively correlated with grain yield (GY) over all years. Sequential path analysis identified PN and panicle weight (PW) as important first-order traits that influenced grain yield. All direct effects were significant, as indicated by bootstrap analysis. Yield potential varied greatly across locations but not across years. Plant height (PH), days from heading to maturity (HM), and grain weight (GW) were stable traits that showed little variation across sites or years, whereas GD (mainly the pre-heading period, PHP) and PN varied significantly across locations. To achieve a yield of 15 t ha-1, a cultivar should have a PH of 110–125 cm, a long GD with HM of approximately 40 days, a PN of 300–400 m-2, and a GW of 29–31 mg.

Total 3