Publications
Sort:
Open Access Research Article Issue
Unique composite architecture of phosphor-in-glass film coated on different heat-conducting substrates for high-brightness laser lighting
Journal of Advanced Ceramics 2025, 14(2): 9221027
Published: 17 February 2025
Abstract PDF (7.8 MB) Collect
Downloads:129

In the development of static luminescent materials with remarkable optical-thermal performance and low cost, next-generation high-brightness laser lighting faces a key challenge. Herein, a unique composite architecture of Y3Al5O12:Ce3+ (YAG) phosphor-in-glass film coated on different heat-conducting substrates (PiGF@HCSs), i.e., PiGF@sapphire, PiGF@Al2O3, PiGF@AlN, and PiGF@BN–AlN composites, was designed and prepared by a simple film printing and low-temperature sintering technology. The heat-conducting substrates significantly affect the luminescence saturation and phosphor conversion of PiGF@HCSs, allowing substrates with higher thermal conductivity (TC) to have a higher laser power density (LPD) and higher reflectivity to enable higher luminous efficacy (LE). As a consequence, PiGF@sapphire realizes a luminous flux (LF) of 2076 lm@12 W/mm2, which is higher than those of PiGF@Al2O3 (1890 lm@15 W/mm2) and PiGF@AlN (1915 lm@24 W/mm2), whilePiGF@BN–AlN enables a maximum LF of 3058 lm@21 W/mm2. Furthermore, the LE of PiGF@BN–AlN reaches 194 lm/W, which is 1.6 times that of PiGF@AlN, while those of PiGF@sapphire and PiGF@Al2O3 are 192 and 150 lm/W, respectively. The working temperature of PiGF@AlN is only 93.3 °C under LPD of 9 W/mm2, while those of PiGF@sapphire, PiGF@Al2O3, and PiGF@BN–AlN increase to 193.8, 133.6, and 117 °C, respectively. These findings provide guidance for commercial applications of PiGF@HCS converters in high-brightness laser lighting and displays.

Open Access Research Article Issue
Laser spot associated high-saturation phosphor-in-glass film for transmissive and reflective high-brightness laser lighting
Journal of Advanced Ceramics 2023, 12(9): 1821-1832
Published: 18 September 2023
Abstract PDF (1.6 MB) Collect
Downloads:377

Phosphor-in-glass (PiG) film is a promising luminescent material in high-brightness laser lighting for its advantages of high efficiency, outstanding color quality, and low-cost preparation, which must bear high laser power (LP) and laser power density (LPD) simultaneously to enable high-luminance light. Herein, laser spot associated high-saturation PiG film was proposed for transmissive and reflective high-brightness laser lighting. Two types of PiG films were prepared by printing and sintering La3Si6N11:Ce3+ (LSN) phosphor-borosilicate glass pastes on a sapphire substrate (PiG-S) and an AlN substrate (PiG-A), respectively. The PiG films with perfect crystal structure of phosphor were reliably bonded on the substrates. The effects of laser spot areas on the luminescence saturation of LP and LPD were investigated in the PiG films. With the increase of laser spot area from 0.5 to 2.5 mm2, the LP threshold of PiG films is gradually raised, while the LPD threshold of PiG films is decreased. The PiG-S withstands a high LP of 23.46 W and a high LPD of 20.64 W/mm2, enabling white light with a luminous flux of 3677 lm. The PiG-A withstands a high LP of 41.12 W and a high LPD of 35.56 W/mm2, enabling white light with a luminous flux of 2882 lm. Moreover, the PiG-A maintains lower working temperature compared with the PiG-S, and the temperatures reduce with the increasing laser spot area. The results demonstrate that the laser spot associated PiG films realize high saturation thresholds of LP and LPD simultaneously, and enable high luminance for laser lighting.

Total 2
1/11GOpage