Two-dimensional (2D) MoTe2 shows great potential for future semiconductor devices, but the lab-to-fab transition is still in its preliminary stage due to the constraints in the crystal growth level. Currently, the chemical vapor deposition growth of 2D MoTe2 primarily relies on the tellurization process of Mo-source precursor (MSP). However, the target product 2H-MoTe2 from Mo precursor suffers from long growth time and suboptimal crystal quality, and MoOx precursor confronts the dilemma of unclear growth mechanism and inconsistent growth products. Here, we developed magnetron-sputtered MoO3 film for fast and high-mobility 2H-MoTe2 growth. The solid-to-solid phase transition growth mechanism of 2D MoTe2 from Mo and MoOx precursor was first experimentally unified, and the effect mechanism of MSPs on 2D MoTe2 growth was systematically elucidated. Compared with Mo and MoO2, the MoO3 precursor has the least Mo-unit lattice deformation and exhibits the optimal crystal quality of growth products. Meanwhile, the lowest Gibbs free energy change of the chemical reaction results in an impressive 2HMoTe2 growth rate of 8.07 μm/min. The constructed 2H-MoTe2 field-effect transistor array from MoO3 precursor showcases record-high hole mobility of 85 cm2·V-1·s-1, competitive on-off ratio of 3×104, and outstanding uniformity. This scalable method not only offers efficiency but also aligns with industry standards, making it a promising guideline for diverse 2D material preparation towards real-world applications.

Two-dimensional (2D) semiconductors, especially transition metal dichalcogenides (TMDCs), have been proven to be excellent channel materials for the next-generation integrated circuit (IC). However, the contact problem between 2D TMDCs and metal electrodes has always been one of the main factors restricting their development. In this review, we summarized recent work on 2D TMDCs contact from the perspective of compatible integration with silicon processes and practical application requirements, including the contact performance evaluation indicators, special challenges encountered in 2D TMDCs, and recent optimization methods. Specifically, we sorted out and highlighted the performance indicators of 2D TMDCs contacts, including contact resistance (RC), contact scaling, contact stability, and contact electrical/thermal conductivity. Special challenges of 2D TMDCs and metal contact, such as severe Fermi level pinning, large RC, and difficult doping, are systematically discussed. Furthermore, typical methods for optimizing 2D TMDCs RC, edge contact strategies for scaling contact lengths, and solutions for improving contact stability are reviewed. Based on the current research and problems, the development direction of 2D TMDCs contacts that meet the silicon-based compatible process and application performance requirements is proposed.