This work presents simple post-treatment methods to selectively and partially remove the Pd core of Pd–Pt core–shell (Pt@Pd/C) catalysts. The proton exchange membrane fuel cell with the post-treated Pt@Pd/C cathode (Pt loading: 0.10 mg∙cm−2) delivers an impressive peak power density of 1.2 W∙cm−2. The partial removal of Pd core endows an ultrahigh oxygen reduction reaction (ORR) mass activity of 0.32 A∙mgPGM−1 when normalized to the platinum group metal (PGM) mass, or equivalently 0.55 A∙mgPt−1 at 0.9 V measured in a fuel cell. The post-treatment thickens the Pt shells and mitigates the Pd dissolution during potential cycling. As a result, the post-treated core–shell catalyst demonstrates superior durability in ORR mass activity and polarization power density retention than untreated core–shell catalyst and benchmark Pt/C. In-situ inductively coupled plasma-mass spectrometry (ICP-MS) results highlight that the amount of dissolved Pd in post-treated core–shell catalyst is 17-times lower than that of the untreated one. Our findings highlight the importance of structural tuning of catalysts in enhancing their mass activity and durability.
Publications
Article type
Year
Research Article
Issue
Nano Research 2024, 17(10): 8772-8784
Published: 06 December 2023
Downloads:94