Sort:
Open Access Perspective Issue
Fluid flow and efficient development technologies in unconventional reservoirs: State-of-the-art methods and future perspectives
Advances in Geo-Energy Research 2024, 12 (3): 237-240
Published: 05 June 2024
Abstract PDF (305.3 KB) Collect
Downloads:13

With the global energy consumption on the rise and the gradual decline in conventional oil production, unconventional reservoirs have received considerable attention in the last decade. However, due to the unique physical properties and a large number of micro/nanopores in unconventional reservoirs, fluid flow in these reservoirs is considerably different from conventional ones. Therefore, it is highly important to conduct research on elucidating these fluid flow mechanisms. Furthermore, to avoid problems associated with the rapid production decline and low recovery efficiency in such reservoirs, an enhanced oil recovery technology that can efficiently and economically develop unconventional reservoirs is urgently required. This paper systematically summarizes the current research on flow mechanisms, including capillary imbibition, molecular-scale fluid flow and productivity prediction in unconventional reservoirs, and introduces the enhanced oil recovery and application status of hydraulic fracturing assisted oil displacement technology, along with a brief analysis of their advantages and disadvantages. This study is intended to serve a reference for the efficient development of unconventional reservoirs.

Open Access Original Article Issue
Explicit original gas in place determination of naturally fractured reservoirs in gas well rate decline analysis
Advances in Geo-Energy Research 2023, 9 (2): 117-124
Published: 27 July 2023
Abstract PDF (582.6 KB) Collect
Downloads:4

Naturally fractured gas reservoirs have contributed significantly to global gas reserves and production. The classical gas-well decline analysis relies largely on Arps’ empirical decline models, or modern production decline analysis associating with pseudo-variables. The explicit original gas in place determination methodology is extended from homogeneous reservoir to naturally fractured reservoir under constant or variable bottom-hole pressure conditions in gas-well rate decline analysis. Then, the relationship between gas flow rate and average reservoir pseudo-pressure in the boundary-dominated flow period is re-derived. This formula is in the same format with the equation for homogeneous reservoir by due to the introduction of a new productivity index parameter that captures the inter-porosity flow between fracture and matrix in the natural fractured reservoir. The proposed step-by-step procedures are applied here, which enable the estimation of decline exponent and the explicit and straightforward determination of the original gas in place without any iterative calculations. Four simulated cases prove that our methodology can be successfully used in heterogeneous naturally fractured reservoirs with irregular boundary under constant or variable bottom-hole pressure conditions.

Total 2