Achieving a high color rendering index (CRI) and luminous stability in single-structured Ce:Y3Al5O12 (Ce:YAG) phosphor ceramics (PCs) is crucial for high-power white light-emitting diodes or laser diodes (LEDs/LDs). However, cyan valleys and insufficient amounts of the red component in the Ce:YAG emission spectra significantly limit their real applications. In this work, a series of Ce,Mn:Y3(Al,Sc)2Al3O12 (Ce,Mn:YSAG) PCs were fabricated by vacuum sintering, and efficient spectral regulation was realized for full-color lighting. The cyan valley was filled by the blueshifted emission peak of Ce3+ via Sc3+ doping. The orange‒red emission at approximately 580 nm was effectively supplemented via Mn2+ doping. In particular, CRI of Ce,Mn:YSAG increased from 56.4 to 85.8, a 52% increase compared with that of Ce:YAG under high-power LED excitation, and the operating temperature was stable at approximately 50 °C for long working time. Moreover, CRI of 80.9 could still be obtained for PC-based white LDs. These results indicated that Ce,Mn:YSAG PC, which has excellent CRI and luminous stability, is an extremely promising color convertor for high-power white LEDs/LDs.
- Article type
- Year
- Co-author
Composite ceramic phosphor (CCP) is a candidate light-conversion material to obtain the high-quality laser lighting source. Phosphors based on the transmissive configuration model could not simultaneously meet the requirements of angular color uniformity and high thermal stability. In this study, a novel composite structure ceramic was designed, including Al2O3–YAG:Ce/YAG layered ceramic with a size of 1 mm × 1 mm for lighting, and Al2O3 ceramic (φ = 16.0 mm) was used as the wrapping material due to its outstanding thermal stability. The prepared ceramics exhibited excellent thermal performance and no yellow ring phenomenon. Through this design, we achieved the match of the intensity distribution of the blue and yellow lights, resulting in a high angular color uniformity of 0.9 with a view angle of ±80°. All ceramics showed no luminous saturation phenomenon, even the laser power density was increased up to 47.51 W/mm2. A high-brightness white-light source with a luminous flux of 618 lm, a luminous efficiency of 126 lm/W, a CCT of 6615 K, and a CRI of 69.9 was obtained in the transmissive configuration. In particular, the surface temperature of the ceramic was as low as 74.1 ℃ under a high laser radiation (47.51 W/mm2). These results indicate that Al2O3/Al2O3–YAG:Ce/YAG composite structure ceramic is a promising luminescent material in the high-power laser lighting applications.