Publications
Sort:
Open Access Research paper Issue
Continuous prediction method of earthquake early warning magnitude for high-speed railway based on support vector machine
Railway Sciences 2022, 1 (2): 307-323
Published: 10 May 2022
Abstract PDF (3.2 MB) Collect
Downloads:1
Purpose

Using the strong motion data of K-net in Japan, the continuous magnitude prediction method based on support vector machine (SVM) was studied.

Design/methodology/approach

In the range of 0.5–10.0 s after the P-wave arrival, the prediction time window was established at an interval of 0.5 s. 12 P-wave characteristic parameters were selected as the model input parameters to construct the earthquake early warning (EEW) magnitude prediction model (SVM-HRM) for high-speed railway based on SVM.

Findings

The magnitude prediction results of the SVM-HRM model were compared with the traditional magnitude prediction model and the high-speed railway EEW current norm. Results show that at the 3.0 s time window, the magnitude prediction error of the SVM-HRM model is obviously smaller than that of the traditional τc method and Pd method. The overestimation of small earthquakes is obviously improved, and the construction of the model is not affected by epicenter distance, so it has generalization performance. For earthquake events with the magnitude range of 3–5, the single station realization rate of the SVM-HRM model reaches 95% at 0.5 s after the arrival of P-wave, which is better than the first alarm realization rate norm required by “The Test Method of EEW and Monitoring System for High-Speed Railway.” For earthquake events with magnitudes ranging from 3 to 5, 5 to 7 and 7 to 8, the single station realization rate of the SVM-HRM model is at 0.5 s, 1.5 s and 0.5 s after the P-wave arrival, respectively, which is better than the realization rate norm of multiple stations.

Originality/value

At the latest, 1.5 s after the P-wave arrival, the SVM-HRM model can issue the first earthquake alarm that meets the norm of magnitude prediction realization rate, which meets the accuracy and continuity requirements of high-speed railway EEW magnitude prediction.

Total 1