Sort:
Regular Paper Issue
FedIERF: Federated Incremental Extremely Random Forest for Wearable Health Monitoring
Journal of Computer Science and Technology 2023, 38(5): 970-984
Published: 30 September 2023
Abstract Collect

Wearable health monitoring is a crucial technical tool that offers early warning for chronic diseases due to its superior portability and low power consumption. However, most wearable health data is distributed across different organizations, such as hospitals, research institutes, and companies, and can only be accessed by the owners of the data in compliance with data privacy regulations. The first challenge addressed in this paper is communicating in a privacy-preserving manner among different organizations. The second technical challenge is handling the dynamic expansion of the federation without model retraining. To address the first challenge, we propose a horizontal federated learning method called Federated Extremely Random Forest (FedERF). Its contribution-based splitting score computing mechanism significantly mitigates the impact of privacy protection constraints on model performance. Based on FedERF, we present a federated incremental learning method called Federated Incremental Extremely Random Forest (FedIERF) to address the second technical challenge. FedIERF introduces a hardness-driven weighting mechanism and an importance-based updating scheme to update the existing federated model incrementally. The experiments show that FedERF achieves comparable performance with non-federated methods, and FedIERF effectively addresses the dynamic expansion of the federation. This opens up opportunities for cooperation between different organizations in wearable health monitoring.

Total 1