Node synchronization is essential for the stability of the Bitcoin network. Critics have raised doubts about the ability of a new node to quickly and efficiently synchronize with the Bitcoin network and alleviate the storage pressure from existing full nodes to stockpile new data. Basic pruning and other techniques have been explored to address these concerns but have been insufficient to reduce node synchronization delay and effectively suppress the growth of synchronized data. In this study, we propose SnapshotPrune, a novel pruning and synchronization protocol that achieves fast node bootstrapping in the Bitcoin blockchain. Real Bitcoin historical data are leveraged to measure the synchronization time and monitor the network traffic during node bootstrapping. The protocol requires data downloads that are 99.70% less than Bitcoin Core, 81% less than CoinPrune, and 60% less than SnapshotSave, thereby saving 97.23% of download time. Findings show that the proposed design enhances the storage efficiency and reduces the node synchronization delay compared with existing techniques. We hypothesize that the efficiency of this protocol increases with the block height.
Publications
- Article type
- Year
- Co-author
Year
Open Access
Issue
Tsinghua Science and Technology 2024, 29(4): 1037-1052
Published: 09 February 2024
Downloads:124
Total 1