Event extraction is an important part of natural language information extraction, and it’s widely employed in other natural language processing tasks including question answering and machine reading comprehension. However, there is a lack of recent comprehensive survey papers on event extraction. In the past few years, numerous high-quality and innovative event extraction methods have been proposed, making it necessary to consolidate these new developments with previous work in order to provide a clear overview for researchers and serve as a reference for future studies. In addition, event detection is a fundamental sub-task in event extraction, previous survey papers have often overlooked the related work on event detection. Therefore, this paper aims to bridge these gaps by presenting a comprehensive survey of event extraction, including recent advancements and an analysis of previous research on event detection. The resources for event extraction are first introduced in this research, and then the numerous neural network models currently employed in event extraction tasks are divided into four types: word sequence-based methods, graph-based neural network methods, external knowledge-based approaches, and prompt-based approaches. We compare and contrast them in depth, pointing out the flaws and difficulties with existing research. Finally, we discuss the future of event extraction development.
- Article type
- Year
- Co-author
Lithological facies classification is a pivotal task in petroleum geology, underpinning reservoir characterization and influencing decision-making in exploration and production operations. Traditional classification methods, such as support vector machines and Gaussian process classifiers, often struggle with the complexity and nonlinearity of geological data, leading to suboptimal performance. Moreover, numerous prevalent approaches fail to adequately consider the inherent dependencies in the sequence of measurements from adjacent depths in a well. A novel approach leveraging an attention-based gated recurrent unit (AGRU) model is introduced in this paper to address these challenges. The AGRU model excels by exploiting the sequential nature of well-log data and capturing long-range dependencies through an attention mechanism. This model enables a flexible and context-dependent weighting of different parts of the sequence, enhancing the discernment of key features for classification. The proposed method was validated on two publicly available datasets. Results demonstrate a considerably improvement over traditional methods. Specifically, the AGRU model achieved superior performance metrics considering precision, recall, and F1-score.