Sort:
Open Access Issue
ResFed: An Accurate and Light Federated Multi-Shot Pre-Trained Model on Edge Devices
Tsinghua Science and Technology 2025, 30(4): 1539-1551
Published: 26 June 2024
Abstract PDF (3.9 MB) Collect
Downloads:10

The rise of machine learning applications at the network edge demands real-time prediction with limited resources, requiring low computational complexity and accurate models. Also, these devices may have poor learning ability due to the lack of samples. Using federated learning enables devices to train machine learning models without sharing their private data. Meta-learning algorithms, particularly few-shot learning, are ideal for federated environments with highly personalized and decentralized training data due to their fast adaptation and good generalization to new tasks. ‎ Despite recent advances, the use of metric-based meta-learning methods remains ambiguous due to ‎their simplicity, as well as their development to improve model learning ability and accuracy in a federated ‎environment. This paper introduces ResFed, a federated meta-learning method specifically tailored for few-shot ‎classification. The approach involves leveraging a pre-trained model and implementing data augmentation within the federated meta-learner, leading to favorable performance outcomes. The experimental results show that our approach, specifically designed for limited data scenarios in the federated environments, significantly improves convergence speed and accuracy. The values of accuracy obtained in CIFAR-100 and Omniglot ‎datasets are 77.44% and 98.24%, respectively. Additionally, when compared to alternative methods, there is a notable reduction in resource costs ranging from 0.4 to 0.61 in diverse scenarios.

Open Access Issue
High-Performance Flow Classification of Big Data Using Hybrid CPU-GPU Clusters of Cloud Environments
Tsinghua Science and Technology 2024, 29(4): 1118-1137
Published: 09 February 2024
Abstract PDF (3.4 MB) Collect
Downloads:193

The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data.

Total 2
1/11GOpage