Publications
Sort:
Open Access Protocol Issue
Seeing is believing: observation of migrasomes
Biophysics Reports 2024, 10 (2): 67-81
Published: 30 April 2024
Abstract PDF (8.3 MB) Collect
Downloads:2

Migrasomes are a novel type of cell organelle that form on the retraction fibers at the rear of migrating cells. In recent years, numerous studies have unveiled the mechanisms of migrasome formation and have highlighted significant roles of migrasomes in both physiological and pathological processes. Building upon the strategies outlined in published works and our own research experiences, we have compiled a comprehensive set of protocols for observing migrasomes. These step-by-step instructions encompass various aspects such as cell culture, labeling, imaging, in vitro reconstitution, and statistical analysis. We believe that these protocols serve as a valuable resource for researchers exploring migrasome biology.

Open Access Protocol Issue
Chick chorioallantoic membrane model to investigate role of migrasome in angiogenensis
Biophysics Reports 2023, 9 (5): 241-254
Published: 31 October 2023
Abstract PDF (12 MB) Collect
Downloads:4

The development of the vascular system is essential for embryonic development, including processes such as angiogenesis. Angiogenesis plays a critical role in many normal physiological and pathological processes. It is driven by a set of angiogenic proteins, including angiogenic growth factors, chemokines, and extracellular matrix proteins. Among various animal model systems, the chorioallantoic membrane (CAM), a specialized and highly vascularized tissue of the avian embryo, has proven to be a valuable tool for analyzing the angiogenic potential of candidate cells or factors. In this protocol, we provide detailed procedures for establishing the CAM model to evaluate the function and mechanism of migrasomes in embryonic angiogenesis. This includes the CAM nylon mesh assay and CAM ex vivo sprouting assay to assess CAM angiogenesis, as well as the observation, purification, and delivery of migrasomes. Additionally, we describe the generation of T4-KO-mCherry-KI embryos using the CRISPR system within the CAM tissue to investigate the role of migrasomes in angiogenesis.

Total 2