Sort:
Open Access Review Issue
The role of intestinal flora on tumorigenesis, progression, and the efficacy of PD-1/PD-L1 antibodies in colorectal cancer
Cancer Biology & Medicine 2024, 21 (1): 65-82
Published: 23 December 2023
Abstract PDF (783.1 KB) Collect
Downloads:3

Intestinal flora affects the maturation of the host immune system, serves as a biomarker and efficacy predictor in the immunotherapy of several cancers, and has an important role in the development of colorectal cancer (CRC). Anti-PD-1/PD-L1 antibodies have shown satisfactory results in MSI-H/dMMR CRC but performed poorly in patients with MSS/pMMR CRC. In recent years an increasing number of studies have shown that intestinal flora has an important impact on anti-PD-1/PD-L1 antibody efficacy in CRC patients. Preclinical and clinical evidence have suggested that anti-PD-1/PD-L1 antibody efficacy can be improved by altering the composition of the intestinal flora in CRC. Herein, we summarize the studies related to the influence of intestinal flora on anti-PD-1/PD-L1 antibody efficacy in CRC and discuss the potential underlying mechanism(s). We have focused on the impact of the intestinal flora on the efficacy and safety of anti-PD-1/PD-L1 antibodies in CRC and how to better utilize the intestinal flora as an adjuvant to improve the efficacy of anti-PD-1/PD-L1 antibodies. In addition, we have provided a basis for the potential of the intestinal flora as a new treatment modality and indicator for determining patient prognosis.

Open Access Original Article Issue
Culturing adequate CAR-T cells from less peripheral blood to treat B-cell malignancies
Cancer Biology & Medicine 2021, 18 (4): 1066-1079
Published: 01 November 2021
Abstract PDF (991.6 KB) Collect
Downloads:0
Objective

Chimeric antigen receptor-modified T (CAR-T) cells have shown impressive results against relapsed/refractory B cell malignancies. However, the traditional manufacture of CAR-T cells requires leukapheresis to isolate large amounts of peripheral blood T cells, thus making some patients ineligible for the procedure.

Methods

We developed a simple method for CAR-T cell preparation requiring small volumes of peripheral blood. First, CD3+ T cells isolated from 50 mL peripheral blood from patients (B-cell malignancies) were stimulated with immobilized anti-CD3/RetroNectin in 6-well plates and then transduced with CAR-expressing lentiviral vector. After 4 d, the T cells were transferred to culture bags for large-scale CAR-T cell expansion. In vitro and animal experiments were performed to evaluate the activity of the manufactured CAR-T cells. Finally, 29 patients with B-cell acute lymphoblastic leukemia (B-ALL) and 9 patients with B-cell lymphoma were treated with the CAR-T cells.

Results

The CAR-T cells were expanded to 1–3 × 108 cells in 8–10 d and successfully killed B cell-derived malignant tumor cells in vitro and in vivo. For patients with B-ALL, the complete remission rate was 93% 1 month after CAR-T cell infusion; after 12 months, the overall survival (OS) and leukemia-free survival rates were 69% and 31%, respectively. For patients with lymphoma, the objective response rate (including complete and partial remission) was 78% 2 months after CAR-T cell infusion, and after 12 months, the OS and progression-free survival rates were 71% and 43%, respectively. Cytokine-release syndrome (CRS) occurred in 65.51% and 55.56% of patients with B-ALL and B-cell lymphoma, respectively; severe CRS developed in 20.69% of patients with B-ALL and in no patients with lymphoma.

Conclusions

Our novel method can generate sufficient numbers of CAR-T cells for clinical use from 50–100 mL peripheral blood, thus providing an alternative means of CAR-T cell generation for patients ineligible for leukapheresis.

Total 2