Dendritic mesoporous silica nanoparticles (DMSNs) are a new class of solid porous materials used for enzyme immobilization support due to their intrinsic characteristics, including their unique open central–radial structures with large pore channels and their excellent biocompatibility. In this review, we review the recent progress in research on enzyme immobilization using DMSNs with different structures, namely, flower-like DMSNs and tree-branch-like DMSNs. Three DMSN synthesis methods are briefly compared, and the distinct characteristics of the two DMSN types and their effects on the catalytic performance of immobilized enzymes are comprehensively discussed. Possible directions for future research on enzyme immobilization using DMSNs are also proposed.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Review Article
Issue
Green Chemical Engineering 2024, 5(2): 173-186
Published: 20 July 2023
Downloads:14
Total 1