Coal remains the most essential fossil energy source in China, with production from underground coal mines accounting for more than 80%. In underground coal mining operations, dust is a pervasive and hazardous material that can significantly compromise the safety and health of miners. High dust concentrations are associated with an increased incidence of pneumoconiosis and a heightened risk of catastrophic events, such as coal dust or gas explosions. The primary source of dust is the cutting processes of excavators and roadheaders during the extraction of coal and rock. Therefore, it is essential to comprehensively elucidate the mechanism of dust generation during cutting and heading operations for effective dust control in underground coal mines.
This paper presents an overview of the latest research developments in the field of dust generation, with a particular emphasis on three key areas: the behavior of dust generation during cutting, research methodology, and influencing mechanisms. First, regarding the behavior of dust generation during cutting by excavators and roadheaders, researchers have proposed several theoretical models to elucidate both the fragmentation processes of coal and rock bodies and the generation of dust under the influence of cutting. These models are based not only on the principle of energy conversion but also on the influence of the geometry of the cutting pick during the dust generation process. This provides a solid theoretical basis for understanding the physical nature of dust generation. Regarding the research tools employed, researchers have simulated the dust generation phenomena when mining machinery cuts coal and rock bodies through physical experiments conducted on self-designed experimental platforms. Researchers have also conducted numerical simulations using finite element or discrete element methods. These advanced experimental techniques elucidate the actual cutting conditions and offer a robust analytical tool for investigating the dust generation mechanism in depth. Additionally, this study provides a comprehensive analysis of the mechanisms influencing dust generation during cutting, examining both internal and external factors. These factors include the physicochemical properties of coal and rock, such as coal rank, moisture content, pore characteristics, strength, and brittleness, as well as the parameters of the cutting conditions, such as cutting depth, advance speed, drum rotation speed, and the morphology and arrangement of picks.
Current research on the dust generation mechanism during cutting reveals several contradictions. Existing models often rely on simplified assumptions, neglecting the anisotropy of coal and the actual cutting conditions in the field, leading to discrepancies between the calculated results and experimental observations. Moreover, existing experimental platforms struggle to accurately replicate the motion of the cutting pick during actual operations. Although many studies have focused on the properties of coal and rock and dust characteristics, some of the conclusions are conflicting. Future research should prioritize the construction of full-scale experimental platforms and the development of high-precision monitoring technologies. Comprehensively investigating the dust generation characteristics of complex coal seams and quantifying the energy conversion mechanisms during the cutting process are crucial. These efforts are essential for improving the efficiency of cutting operations and achieving more effective dust control.