Publications
Sort:
Open Access Research Article Issue
Realizing the excellent oxidation resistance of an environmental barrier coating through aluminum surface modification
Journal of Advanced Ceramics 2024, 13 (7): 976-986
Published: 30 July 2024
Abstract PDF (9 MB) Collect
Downloads:130

The lifetime of Si-based environmental barrier coatings (EBCs) is constrained by thermally grown SiO2 oxide layer (SiO2-TGO), which can cause premature cracking and spalling. To address this issue, a new approach for surface modification using aluminum is proposed. The oxidation performance was examined in a 50 vol% H2O–50 vol% O2 environment at 1350 °C for up to 300 h. The results indicate that a dense ytterbium aluminum garnet (YbAG) layer was formed after modification, decreasing the porosity by 80%. Due to the elimination of fast diffusion channels and the low oxygen permeability of YbAG, aluminum modification significantly reduced the growth rate of SiO2-TGO by nearly two orders of magnitude. Consequently, its thickness decreased by more than 70% after 300 h of exposure. A diffusion-controlled oxidation mechanism indicates that the modified dense surface is equivalent to an initial SiO2 layer with a specific thickness, causing a shift in the oxidation time and increasing the oxidation resistance. This research provides valuable insights for designing Si-based EBC with improved lifetimes.

Total 1