Sort:
Open Access Full Length Article Issue
Melatonin ameliorates Slc26a2-associated chondrodysplasias by attenuating endoplasmic reticulum stress and apoptosis of chondrocytes
Genes & Diseases 2025, 12(2): 101350
Published: 14 June 2024
Abstract PDF (4.8 MB) Collect
Downloads:1

Although the pathogenesis and mechanism of congenital skeletal dysplasia are better understood, progress in drug development and intervention research remains limited. Here we report that melatonin treatment elicits a mitigating effect on skeletal abnormalities caused by SLC26A2 deficiency. In addition to our previous finding of endoplasmic reticulum stress upon SLC26A2 deficiency, we found calcium (Ca2+) overload jointly contributed to SLC26A2-associated chondrodysplasias. Continuous endoplasmic reticulum stress and cytosolic Ca2+ overload in turn triggered apoptosis of growth plate chondrocytes. Melatonin, known for its anti-oxidant and anti-inflammatory properties, emerged as a promising therapeutic approach in our study, which enhanced survival, proliferation, and maturation of chondrocytes by attenuating endoplasmic reticulum stress and Ca2+ overload. Our findings not only demonstrated the efficacy of melatonin in ameliorating abnormal function and cell fate of SLC26A2-deficient chondrocytes in vitro but also underscored its role in partially alleviating the skeletal dysplasia seen in Col2a1-CreERT2; Slc26a2fl/fl mice. As revealed by histology and micro-CT analyses, melatonin significantly improved retarded cartilage growth, defective trabecular bone formation, and tibial genu varum in vivo. Collectively, these data shed translational insights for drug development and support melatonin as a potential treatment for SLC26A2-related chondrodysplasias.

Open Access Original Article Issue
Restoring the dampened expression of the core clock molecule BMAL1 protects against compression-induced intervertebral disc degeneration
Bone Research 2022, 10: 20
Published: 25 February 2022
Abstract PDF (5.9 MB) Collect
Downloads:1

The circadian clock participates in maintaining homeostasis in peripheral tissues, including intervertebral discs (IVDs). Abnormal mechanical loading is a known risk factor for intervertebral disc degeneration (IDD). Based on the rhythmic daily loading pattern of rest and activity, we hypothesized that abnormal mechanical loading could dampen the IVD clock, contributing to IDD. Here, we investigated the effects of abnormal loading on the IVD clock and aimed to inhibit compression-induced IDD by targeting the core clock molecule brain and muscle Arnt-like protein-1 (BMAL1). In this study, we showed that BMAL1 KO mice exhibit radiographic features similar to those of human IDD and that BMAL1 expression was negatively correlated with IDD severity by systematic analysis based on 149 human IVD samples. The intrinsic circadian clock in the IVD was dampened by excessive loading, and BMAL1 overexpression by lentivirus attenuated compression-induced IDD. Inhibition of the RhoA/ROCK pathway by Y-27632 or melatonin attenuated the compression-induced decrease in BMAL1 expression. Finally, the two drugs partially restored BMAL1 expression and alleviated IDD in a diurnal compression model. Our results first show that excessive loading dampens the circadian clock of nucleus pulposus tissues via the RhoA/ROCK pathway, the inhibition of which potentially protects against compression-induced IDD by preserving BMAL1 expression. These findings underline the importance of the circadian clock for IVD homeostasis and provide a potentially effective therapeutic strategy for IDD.

Total 2
1/11GOpage