Sort:
Research Article Issue
Engineering S-scheme W18O49/ZnIn2S4 heterojunction by CoxP nanoclusters for enhanced charge transfer capability and solar hydrogen evolution
Nano Research 2024, 17(9): 8095-8103
Published: 24 June 2024
Abstract PDF (10.6 MB) Collect
Downloads:62

Enhancement of the light-absorption response and utilization of the photogenerated carriers represent a robust strategy for the design of high-performance photocatalyst. In this work, grafting CoxP nanoclusters onto S-scheme heterojunction of W18O49/ZnIn2S4 (WO/ZIS-CoxP) with strong response to the ultraviolet–visible–near infrared ray (UV–vis–NIR) region has been achieved, which possesses efficient electron-transfer-channel, and boosts charge-separation and transport kinetics. The as-prepared WO/ZIS-CoxP yields an impressive solar-driven hydrogen production rate of 45 mmol·g−1·h−1. The increased photocatalytic performance is attributed to the synergistic effect of the composite catalyst: (1) The local surface plasmon resonance-induced “hot electron” injection of W18O49 significantly increases the electron density; (2) the engineered S-scheme directional electron transfer promotes charge separation and enhances the reducing capability of photoexcited electrons; and (3) CoxP as electron-trap site for accelerating surface proton reduction reaction. This work provides a platform to impart nonprecious co-catalyst for engineering S-scheme heterojunction, serving a class of efficient solar-driven photocatalyst towards hydrogen production.

Total 1