Sort:
Open Access Review Issue
Interoceptive regulation of skeletal tissue homeostasis and repair
Bone Research 2023, 11: 48
Published: 05 September 2023
Abstract PDF (2.6 MB) Collect
Downloads:2

Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.

Open Access Original Article Issue
Neutralization of excessive levels of active TGF-β1 reduces MSC recruitment and differentiation to mitigate peritendinous adhesion
Bone Research 2023, 11: 24
Published: 08 May 2023
Abstract PDF (13.8 MB) Collect
Downloads:2

Peritendinous adhesion formation (PAF) can substantially limit the range of motion of digits. However, the origin of myofibroblasts in PAF tissues is still unclear. In this study, we found that the concentration of active TGF-β1 and the numbers of macrophages, mesenchymal stromal cells (MSCs), and myofibroblasts in human and mouse adhesion tissues were increased. Furthermore, knockout of TGF-β1 in macrophages or TGF-β1R2 in MSCs inhibited PAF by reducing MSC and myofibroblast infiltration and collagen Ⅰ and Ⅲ deposition, respectively. Moreover, we found that MSCs differentiated into myofibroblasts to form adhesion tissues. Systemic injection of the TGF-β–neutralizing antibody 1D11 during the granulation formation stage of PAF significantly reduced the infiltration of MSCs and myofibroblasts and, subsequently, PAF. These results suggest that macrophage-derived TGF-β1 recruits MSCs to form myofibroblasts in peritendinous adhesions. An improved understanding of PAF mechanisms could help identify a potential therapeutic strategy.

Total 2