Sort:
Open Access Full Length Article Issue
Design method and experimental study of a cathode tool with an extremely high leveling ratio for electrochemical machining of blisk
Chinese Journal of Aeronautics 2024, 37 (4): 593-608
Published: 14 August 2023
Abstract Collect

To obtain final parts with the desired dimensional accuracy and repeatability via electrochemical machining (ECM), the machining process must enter an ECM balanced state. However, for the ECM processing of blisk, a key component of aerospace engines, the surface of the blade blank often has an uneven allowance distribution due to the narrow passage of the cascade. It is difficult to remedy this issue in subsequent processing steps, which is necessary to ensure the dimensional accuracy and repeatability of the final blade profile. To solve this problem, electrolytic machining must be preceded by electrolytic shaping, which requires cathode tools with large leveling ratios to quickly homogenize the blank surface of the blade. In this study, to obtain a cathode tool with an extremely high leveling ratio, a design method based on the variation in the electrode gap in the non-equilibrium electrolytic state is proposed, and a dissolution model based on the non-equilibrium state is established. In this design method, the allowance on the blank to be machined is first divided into many discrete allowances with the normal direction. The initial machining clearance, feed rate, and total machining time are then calculated using classical ECM equilibrium state theory based on the maximum allowance. Meanwhile, the point coordinates of the cathode tool at maximum allowance can be determined. The non-equilibrium model can then be used to calculate the relative coordinate positions corresponding to the remaining discrete allowances. Finally, the entire cathode tool profile is designed. Simulations, fundamental experiments, and blisk unit workpiece experiments were carried out to validate the design approach. In the simulated processing of the plane workpiece, the leveling ratio of the cathode tool designed by the proposed method (0.77) was 83% higher than that of the cathode tool designed using the traditional method. The simulation results were confirmed by processing experiments. In the machining of blisk unit workpieces with complex curved surfaces, the leveling ratios of the convex and concave parts of the blade machined using the proposed cathode tool respectively reached 0.75 and 0.54, which are 75% and 38% higher than those obtained using the traditional method. This new cathode design method and machining technology can significantly improve the surface allowance distribution of blank before electrolytic finishing. It is helpful for finishing machine to enter electrolytic equilibrium state. Finally, the final blade profile accuracy can be guaranteed and repeated errors can be reduced.

Open Access Full Length Article Issue
Improving profile accuracy and surface quality of blisk by electrochemical machining with a micro inter-electrode gap
Chinese Journal of Aeronautics 2023, 36 (4): 523-537
Published: 16 July 2022
Abstract Collect

Electrochemical machining (ECM) has emerged as an important option for manufacturing the blisk. The inter-electrode gap (IEG) distribution is an essential parameter for the blisk precise shaping process in ECM, as it affects the process stability, profile accuracy and surface quality. Larger IEG leads to a poor localization effect and has an adverse influence on the machining accuracy and surface quality of blisk. To achieve micro-IEG (<50 μm) blisk finishing machining, this work puts forward a novel variable-parameters blisk ECM strategy based on the synchronous coupling mode of micro-vibration amplitude and small pulse duration. The modelling and simulation of the blisk micro-IEG machining have been carried out. Exploratory experiments of variable-parameters blisk ECM were carried out. The results illustrated that the IEG width reduced with the progress of variable parameter process. The IEG width of the blade’s concave part and convex part could be successfully controlled to within 30 μm and 21 μm, respectively. The profile deviation for the blade’s concave surface and convex surface are 49 μm and 35 μm, while the surface roughness reaches Ra = 0.149 μm and Ra = 0.196 μm, respectively. The profile accuracy of the blisk leading/trailing edges was limited to within 91 μm. Compared with the currently-established process, the profile accuracy of the blade’s concave and convex profiles was improved by 50.5 % and 53.3 %, respectively. The surface quality was improved by 53.2 % and 50.9 %, respectively. Additionally, the machined surface was covered with small corrosion pits and weak attacks of the grain boundary due to selective dissolution. Some electrolytic products were dispersed on the machined surface, and their components were mainly composed of the carbide and oxide products of Ti and Nb elements. The results indicate that the variable-parameters strategy is effective for achieving a tiny IEG in blisk ECM, which can be used in engineering practice.

Total 2