Sort:
Open Access Issue
Time-of-Use Price Resource Scheduling in Multiplex Networked Industrial Chains
Tsinghua Science and Technology 2025, 30(1): 303-317
Published: 23 April 2024
Abstract PDF (5.2 MB) Collect
Downloads:12

With the advancement of electronic information technology and the growth of the intelligent industry, the industrial sector has undergone a shift from simplex, linear, and vertical chains to complex, multi-level, and multi-dimensional networked industrial chains. In order to enhance energy efficiency in multiplex networked industrial chains under time-of-use price, a coarse time granularity task scheduling approach has been adopted. This approach adjusts the distribution of electricity supply based on task deadlines, dividing it into longer periods to facilitate batch access to task information. However, traditional simplex-network task assignment optimization methods are unable to achieve a globally optimal solution for cross-layer links in multiplex networked industrial chains. Existing solutions struggle to balance execution costs and completion efficiency in time-of-use price scenarios. Therefore, this paper presents a mixed-integer linear programming model for solving the problem scenario and two algorithms: an exact algorithm based on the branch-and-bound method and a multi-objective heuristic algorithm based on cross-layer policy propagation. These algorithms are designed to adapt to small-scale and large-scale problem scenarios under coarse time granularity. Through extensive simulation experiments and theoretical analysis, the proposed methods effectively optimize the energy and time costs associated with the task execution.

Open Access Issue
Optimizing Risk-Aware Task Migration Algorithm Among Multiplex UAV Groups Through Hybrid Attention Multi-Agent Reinforcement Learning
Tsinghua Science and Technology 2025, 30(1): 318-330
Published: 01 April 2024
Abstract PDF (4.6 MB) Collect
Downloads:11

Recently, with the increasing complexity of multiplex Unmanned Aerial Vehicles (multi-UAVs) collaboration in dynamic task environments, multi-UAVs systems have shown new characteristics of inter-coupling among multiplex groups and intra-correlation within groups. However, previous studies often overlooked the structural impact of dynamic risks on agents among multiplex UAV groups, which is a critical issue for modern multi-UAVs communication to address. To address this problem, we integrate the influence of dynamic risks on agents among multiplex UAV group structures into a multi-UAVs task migration problem and formulate it as a partially observable Markov game. We then propose a Hybrid Attention Multi-agent Reinforcement Learning (HAMRL) algorithm, which uses attention structures to learn the dynamic characteristics of the task environment, and it integrates hybrid attention mechanisms to establish efficient intra- and inter-group communication aggregation for information extraction and group collaboration. Experimental results show that in this comprehensive and challenging model, our algorithm significantly outperforms state-of-the-art algorithms in terms of convergence speed and algorithm performance due to the rational design of communication mechanisms.

Total 2