The prediction of building energy consumption offers essential technical support for intelligent operation and maintenance of buildings, promoting energy conservation and low-carbon control. This paper focused on the energy consumption of heating, ventilation and air conditioning (HVAC) systems operating under various modes across different seasons. We constructed multi-attribute and high-dimensional clustering vectors that encompass indoor and outdoor environmental parameters, along with historical energy consumption data. To enhance the K-means algorithm, we employed statistical feature extraction and dimensional normalization (SFEDN) to facilitate data clustering and deconstruction. This method, combined with the gated recurrent unit (GRU) prediction model employing adaptive training based on the Particle Swarm Optimization algorithm, was evaluated for robustness and stability through k-fold cross-validation. Within the clustering-based modeling framework, optimal submodels were configured based on the statistical features of historical 24-hour data to achieve dynamic prediction using multiple models. The dynamic prediction models with SFEDN cluster showed a 11.9% reduction in root mean square error (RMSE) compared to static prediction, achieving a coefficient of determination (R2) of 0.890 and a mean absolute percentage error (MAPE) reduction of 19.9%. When compared to dynamic prediction based on single-attribute of HVAC systems energy consumption clustering modeling, RMSE decreased by 12.6%, R2 increased by 4.0%, and MAPE decreased by 26.3%. The dynamic prediction performance demonstrated that the SFEDN clustering method surpasses conventional clustering method, and multi-attribute clustering modeling outperforms single-attribute modeling.
Publications
- Article type
- Year
Article type
Year
Cover Article
Issue
Building Simulation 2024, 17(9): 1439-1460
Published: 19 July 2024
Downloads:34
Total 1