It is challenging to automatically explore an unknown 3D environment with a robot only equipped with depth sensors due to the limited field of view. We introduce THP, a tensor field-based framework for efficient environment exploration which can better utilize the encoded depth information through the geometric characteristics of tensor fields. Specifically, a corresponding tensor field is constructed incrementally and guides the robot to formulate optimal global exploration paths and a collision-free local movement strategy. Degenerate points generated during the exploration are adopted as anchors to formulate a hierarchical TSP for global path optimization. This novel strategy can help the robot avoid long-distance round trips more effectively while maintaining scanning completeness. Furthermore, the tensor field also enables a local movement strategy to avoid collision based on particle advection. As a result, the framework can eliminate massive, time-consuming recalculations of local movement paths. We have experimentally evaluate our method with a ground robot in 8 complex indoor scenes. Our method can on average achieve 14% better exploration efficiency and 21% better exploration completeness than state-of-the-art alternatives using LiDAR scans. Moreover, compared to similar methods, our method makes path decisions 39% faster due to our hierarchical exploration strategy.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Research Article
Issue
Computational Visual Media 2024, 10(6): 1121-1135
Published: 18 May 2024
Downloads:0
Total 1