Sort:
Open Access Issue
Lightweight and Privacy-Preserving IoT Service Recommendation Based on Learning to Hash
Tsinghua Science and Technology 2025, 30(4): 1793-1807
Published: 03 March 2025
Abstract PDF (3.5 MB) Collect
Downloads:8

In the Internet of Things (IoT) environment, user-service interaction data are often stored in multiple distributed platforms. In this situation, recommender systems need to integrate the distributed user-service interaction data across different platforms for making a comprehensive recommendation decision, during which user privacy is probably disclosed. Moreover, as user-service interaction records accumulate over time, they significantly reduce the efficiency of recommendations. To tackle these issues, we propose a lightweight and privacy-preserving service recommendation approach named SerRecL2H. In SerRecL2H, we employ Learning to Hash (L2H) to encapsulate sensitive user-service interaction data into less-sensitive user indices, which facilitates identifying users with similar preferences efficiently for accurate recommendations. We then validate the feasibility of our proposed SerRecL2H approach through massive experiments conducted on the popular WS-DREAM dataset. The comparative analysis with other competitive approaches demonstrates that our proposal surpasses other approaches in terms ofrecommendation accuracy and efficiency while protecting user privacy.

Open Access Issue
MDGCN-Lt: Fair Web API Classification with Sparse and Heterogeneous Data Based on Deep GCN
Tsinghua Science and Technology 2025, 30(3): 1294-1314
Published: 30 December 2024
Abstract PDF (31.4 MB) Collect
Downloads:17

Developers integrate web Application Programming Interfaces (APIs) into edge applications, enabling data expansion to the edge computing area for comprehensive coverage of devices in that region. To develop edge applications, developers search API categories to select APIs that meet specific functionalities. Therefore, the accurate classification of APIs becomes critically important. However, existing approaches, as evident on platforms like programableweb.com, face significant challenges. Firstly, sparsity in API data reduces classification accuracy in works focusing on single-dimensional API information. Secondly, the multidimensional and heterogeneous structure of web APIs adds complexity to data mining tasks, requiring sophisticated techniques for effective integration and analysis of diverse data aspects. Lastly, the long-tailed distribution of API data introduces biases, compromising the fairness of classification efforts. Addressing these challenges, we propose MDGCN-Lt, an API classification approach offering flexibility in using multi-dimensional heterogeneous data. It tackles data sparsity through deep graph convolutional networks, exploring high-order feature interactions among API nodes. MDGCN-Lt employs a loss function with logit adjustment, enhancing efficiency in handling long-tail data scenarios. Empirical results affirm our approach’s superiority over existing methods.

Total 2
1/11GOpage