Publications
Sort:
Issue
Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat
Scientia Agricultura Sinica 2023, 56(5): 801-820
Published: 01 March 2023
Abstract PDF (7.4 MB) Collect
Downloads:2
【Objective】

Plant roots are critical for water and nutrient acquisition, crop growth and development as well as yield formation. Exploring SNP loci significantly associated with root traits in wheat at seedling stage and mining candidate genes, will lay a foundation for understanding the genetic mechanism of wheat root system architecture and breeding wheat elite varieties with better root architecture.

【Method】

In this study, 189 diverse wheat cultivars were assembled as an association-mapping panel, five root traits including total root length (TRL), total root area (TRA), total root volume (TRV), average root diameter (ARD) and root dry weight (RDW) were investigated by growing in two culture conditions (Hoagland nutrient solution and pure water), and the experiments were repeated twice. Then, genome-wide association studies (GWAS) were performed for the five root traits with genotypic data derived from Wheat 660K SNP Array. Candidate genes were predicted by sequence alignment, domain analysis, and annotation information. Futhermore, kompetitive allele specific PCR (KASP) markers were developed for root traits.

【Result】

The root traits varied greatly among the 189 cultivars, and the roots were thick and short cultured under Hoagland nutrient solution, while slender seminal roots and more lateral roots were observed under pure water. A total of 95 QTLs significantly associated with root traits cultured in two conditions (P<10-3) were identified by genome-wide association studies with four models of BLINK (bayesian-information and linkage-disequilibrium iteratively nested keyway), CMLM (compressed mixed linear model), FarmCPU (fixed and random model circulating probability unification) and MLM (mixed linear model). Among them, 18 QTLs were detected in both culture conditions and distributed on chromosomes of 7A, 1B, 2B, 3B, 7B, 1D, 2D, and 3D, which explained 8.68%-14.07% of phenotypic variation. Of those significant loci, 4 QTLs were similar or consistent with that reported previously, and the rest were novel ones. Haplotype analysis conducted for co-localization QTLs of 10 SNPs revealed significant differences in root traits between the two haplotypes of wheat cultivars. Based on these SNPs, KASP markers XNR7143 and XNR3707 were developed for total root volume and root dry weight, respectively. In addition, 12 candidate genes possibly regulating root development were found by mining the genes within the interval of co-localization significant SNPs. Of them, TraesCS7A02G160600, encoding 3-oxoacyl-[acyl-carrier-protein] synthase, is involved in the synthesis of root fatty acids; TraesCS1B02G401800, encoding syntaxin, plays an important role in plant tropism; TraesCS7B02G417900, encoding aldehyde oxidase, contributes to the synthesis of abscisic acid and regulation of crop root development.

【Conclusion】

The root traits of wheat varied significantly among the wheat genotypes. Genome-wide association studies detected 18 significant QTLs linked with root traits simultaneously in two culture conditions, two KASP markers were developed for root traits, and 12 candidate genes related to root development were screened, which might provide reference for understanding the regulation mechanism of wheat root traits and molecular marker-assisted breeding for wheat improvement.

Total 1
1/11GOpage