Population aging presents a growing societal challenge and imposes a heavy burden on the healthcare system in many Asian countries. Given the limited availability of formal long‐term care (LTC) facilities and personnel, family caregivers play a vital role in providing care for the increasing population of older adults. While awareness of the challenges faced by caregivers is rising, discussions often remain within academic circles, resulting in the lived experiences, well‐being, and needs of family caregivers being frequently overlooked. In this review, we identify four key priority areas to advance research, practice, and policy related to family caregivers in Asia: (1) Emphasizing family caregivers as sociocultural navigators in the healthcare system; (2) addressing the mental and physical health needs of family caregivers; (3) recognizing the diverse caregiving experiences across different cultural backgrounds, socioeconomic status, and countries of residence; and (4) strengthening policy support for family caregivers. Our review also identifies deficiencies in institutional LTC and underscores the importance of providing training and empowerment to caregivers. Policymakers, practitioners, and researchers interested in supporting family caregivers should prioritize these key areas to tackle the challenge of population aging in Asian countries. Cross‐country knowledge exchange and capacity development are crucial for better serving both the aging population and their caregivers.


Frailty in older adults is linked to increased risks and lower quality of life. Pre‐frailty, a condition preceding frailty, is intervenable, but its determinants and assessment are challenging. This study aims to develop and validate an explainable machine learning model for pre‐frailty risk assessment among community‐dwelling older adults.
The study included 3141 adults aged 60 or above from the China Health and Retirement Longitudinal Study. Pre‐frailty was characterized by one or two criteria from the physical frailty phenotype scale. We extracted 80 distinct features across seven dimensions to evaluate pre‐frailty risk. A model was constructed using recursive feature elimination and a stacking‐CatBoost distillation module on 80% of the sample and validated on a separate 20% holdout data set.
The study used data from 2508 community‐dwelling older adults (mean age, 67.24 years [range, 60–96]; 1215 [48.44%] females) to develop a pre‐frailty risk assessment model. We selected 57 predictive features and built a distilled CatBoost model, which achieved the highest discrimination (AUROC: 0.7560 [95% CI: 0.7169, 0.7928]) on the 20% holdout data set. The living city, BMI, and peak expiratory flow (PEF) were the three most significant contributors to pre‐frailty risk. Physical and environmental factors were the top 2 impactful feature dimensions.
An accurate and interpretable pre‐frailty risk assessment framework using state‐of‐the‐art machine learning techniques and explanation methods has been developed. Our framework incorporates a wide range of features and determinants, allowing for a comprehensive and nuanced understanding of pre‐frailty risk.