The development of high-strain piezoelectric materials has presented a longstanding challenge, particularly in the development of high-strain polycrystalline lead-free piezoelectric thin films. In this work, we present a strategy for customizing the electrostrain in lead-free thin films through phase transition engineering. In this study, we achieved a high recoverable electrostrain in a Bi1/2Na1/2TiO3–BiAlO3 (BNT–BA) film. To accomplish this, ferroelectric BNT and BNT–BA films with identical thicknesses of 500 nm were fabricated on Pt(111)/TiO2/SiO2/Si(100) substrates via a sol-gel method. Compared with the BNT film, the BNT–BA film exhibited a greater polarization response and superior field strength endurance, maintaining the energy storage density beyond the breakdown field strength of the BNT. The BNT–BA film demonstrated a large unipolar strain of S = 0.43% with a normalized strain (maximum strain/maximum applied electric field (Smax/Emax)) of 203 pm/V, followed by an effective transverse piezoelectric coefficient (
Publications
Article type
Year

Journal of Advanced Ceramics 2025, 14(3): 9221034
Published: 17 March 2025
Downloads:125