Due to the existence of fracturing fluid and formation water in shale gas reservoirs, the coexistence of gas and water in nanopores is prevalent. The pore water in the reservoir, on the one hand, affects gas flow behavior and permeability. On the other hand, it blocks pore throats and occupies adsorption sites on the pore surface, consequently reducing the gas adsorption capacity. The occurrence of pore water in shale reservoirs holds significant importance for shale gas resources exploration and development. In this paper, the shale from the Longmaxi Formation, Sichuan Basin was selected as the research target. The content and micro-distribution behavior of pore water were evaluated through centrifugation-nuclear magnetic resonance experiment and theoretical model. The results demonstrated that the content of free water would be underestimated by the experiment, with 2.55%-6.80% lower than that calculated by theoretical model. Moreover, due to the limitations of nuclear magnetic resonance experiment, the adsorbed water in mesopores and macropores might be mistakenly identified as that in smaller pores. As a result, the theoretical model is more applicable for characterizing the micro-distribution behavior of pore water than the origin nuclear magnetic resonance data.
Publications
Article type
Year

Advances in Geo-Energy Research 2025, 15(1): 79-86
Published: 13 December 2024
Downloads:4