The imbibition process plays a crucial role in the development of shale reservoirs, particularly during the volume fracturing and water injection development phases. This process significantly influences the production capacity of shale and also serves as a essential parameter for assessing reservoir performance. Clay minerals contribute to the formation of numerous micro-pores and micro-fractures, exhibit strong plasticity and are prone to swelling. The unique structures and properties of clay minerals have a profound impact on shale imbibition. This review analyzes the effects of clay minerals on imbibition from different perspectives, finding that the effect is closely related to the total amount of clay minerals, as well as to specific mineral types and content. Clay minerals exhibit a dual impact on imbibition, which can either facilitate imbibition by promoting micro-fractures formation or hinder it by reducing pore throats and migrating to block flow paths due to swelling. While capillary action is usually considered the main mechanism for fluid displacement during the imbibition, the osmotic pressure formed by clay minerals can also serve as a driving force for imbibition, positively contributing to shale oil and gas recovery. This review aims to provide a comprehensive understanding of the role of clay minerals on the imbibition, providing a theoretical foundation and practical guidance for future research and efficient development of shale reservoirs.
Publications
Article type
Year

Capillarity 2025, 14(1): 13-22
Published: 09 January 2025
Downloads:11