Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Biochemical reactions in vivo occur at the temperature usually lower than that in vitro, however the underlying mechanism still remains a challenge. Inspired by our recent studies of adenosine triphosphate (ATP) releasing photons to resonantly drive DNA replication in a quantum way, we propose a quantized chemical reaction driven by multiple mid-infrared (MIR) photons. The space confinement effect of enzymes on a reactant molecule increases the lifetime of excitation state of its bond vibration, providing a chance for the bond to resonantly absorb multiple photons. Although the energy of each MIR photon is significantly lower than that of chemical bond, the resonant absorption of multiple photons can break the appointed bond of confined molecules. Different from the traditional thermochemistry and photochemistry, the quantized chemical reactions could have a high energy efficiency and ultrahigh selectivity. In addition, we also suggest a quantum driving source for our quantum-confined superfluid reactions proposed previously. The quantized chemical reaction resonantly driven by multiple MIR photons holds great promise to develop novel approaches for the chemical engineering in future.
Li, N.; Peng, D. L.; Zhang, X. J.; Shu, Y. S.; Zhang, F.; Jiang, L.; Song, B. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 2021, 14, 40–45.
Chen, L.; Lau, J. A.; Schwarzer, D.; Meyer, J.; Verma, V. B.; Wodtke, A. M. The Sommerfeld ground-wave limit for a molecule adsorbed at a surface. Science 2019, 363, 158–161.
Stensitzki, T.; Yang, Y.; Kozich, V.; Ahmed, A. A.; Kössl, F.; Kühn, O.; Heyne, K. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation. Nat. Chem. 2018, 10, 126–131.
Chen, J. W.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y. P.; Lo, S. M. F.; Williams, I. D.; Zhu, D. B.; Tang, B. Z. Synthesis, light Emission, nanoaggregation, and restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-tetraphenylsiloles. Chem. Mater. 2003, 15, 1535–1546.
Vande Berg, B. J.; Beard, W. A.; Wilson, S. H. DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase β: Implication for the identity of the rate-limiting conformational change. J. Biol. Chem. 2001, 276, 3408–3416.
Lelyveld, V. S.; Zhang, W.; Szostak, J. W. Synthesis of phosphoramidate-linked DNA by a modified DNA polymerase. Proc. Natl. Acad. Sci. USA 2020, 117, 7276–7283.
Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.
Liu, S. J.; Zhang, X. Q.; Jiang, L. 1D nanoconfined ordered-assembly reaction. Adv. Mater. Interfaces 2019, 6, 1900104.
Hao, Y. W.; Pang, S.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid reactions. Chem. Sci. 2020, 11, 10035–10046.
Wayne, C. E.; Wayne, R. P. Photochemistry; Oxford University Press: Oxford, 1996.
Maréchal, Y. The molecular structure of liquid water delivered by absorption spectroscopy in the whole IR region completed with thermodynamics data. J. Mol. Struct. 2011, 1004, 146–155.
Caine, S.; Heraud, P.; Tobin, M. J.; McNaughton, D.; Bernard, C. C. A. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. NeuroImage 2012, 59, 3624–3640.