AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantum essence of particle superfluidity

Bo Song1( )Lei Jiang1,2,3( )
School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

A collective motion (CM) of particles is necessary for a high-flux transport with an ultralowresistivity, which results from the balance between attraction and repulsion of the particles. We tryto establish a phenomenological expression for the quantum state of ionic or molecular CM atambient temperature.

Abstract

Life systems show an ultralow energy consumption in their high-efficiency bio-activities, implying a high-flux transport of ions and molecules with an ultralow resistivity. A collective motion (CM) of these particles is necessary for this kind of behaviors, different from the traditional Newtonian diffusion. The CM is an ordered particle state, resulting from the balance between attraction and repulsion of the particles, in which the attraction is a necessary condition. The ultralow resistivity of electronic or atomic fluid at low temperature is already described phenomenologically by introducing the interparticle attraction. Here, we try to establish a phenomenological expression for the quantum state of ion or molecule CM at ambient temperature, by also considering the attraction of particles. These studies suggest that the Bose-Einstein condensate potentially exists widely.

References

1

Ocké, M. C.; Larrañaga, N.; Grioni, S.; Van Den Berg, S. W.; Ferrari, P.; Salvini, S.; Benetou, V.; Linseisen, J.; Wirfält, E.; Rinaldi, S. et al. Energy intake and sources of energy intake in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63, S3–S15.

2

Raichle, M. E.; Gusnard, D. A. Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. USA 2002, 99, 10237–10239.

3

Hou, Y. Q.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628–629.

4

Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

5

Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.

6

Hao, Y. W.; Pang, S.; Zhang, X. Q.; Jiang, L. Quantum-confined superfluid reactions. Chem. Sci. 2020, 11, 10035–10046.

7

Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

8

De Groot, B. L.; Grubmüller, H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 2001, 294, 2353–2357.

9

Li, N.; Peng, D. L.; Zhang, X. J.; Shu, Y. S.; Zhang, F.; Jiang, L.; Song, B. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 2021, 14, 40–45.

10

Zhang, F.; Song, B.; Jiang, L. The quantized chemical reaction resonantly driven by multiple MIR-photons: From nature to the artificial. Nano Res. 2021, 14, 4367–4369.

11

Borysova, L.; Ng, Y. Y. H.; Wragg, E. S.; Wallis, L. E.; Fay, E.; Ascione, R.; Dora, K. A. High spatial and temporal resolution Ca2+ imaging of myocardial strips from human, pig and rat. Nat. Protoc. 2021, 16, 4650–4675.

12

Xu, J.; Lavan, D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 2008, 3, 666–670.

13

Catania, K. C. Power transfer to a human during an electric eel’s shocking leap. Curr. Biol. 2017, 27, 2887–2891.e2.

14

Song, B.; Jiang, L. The macroscopic quantum state of ion channels: A carrier of neural information. Sci. China Mater. 2021, 64, 2572–2579.

15
Leggett, A. J. Quantum Liquids; Oxford University Press: New York, 2006.https://doi.org/10.1093/acprof:oso/9780198526438.001.0001
16

Zhang, X. Q.; Song, B.; Jiang, L. Driving force of molecular/ionic superfluid formation. CCS Chem. 2021, 3, 1258–1266.

17
Landau, L. D.; Lifshitz, E. M. Statistical Physics, 3rd ed.; Pergamon Press: Oxford, 1980.
18
Onnes, H. K. Further experiments with liquid helium. D. On the change of the electrical resistance of pure metals at very low Temperatures, etc. V. The disappearance of the resistance of mercury. In Through Measurement to Knowledge; Gavroglu, K.; Goudaroulis, Y., Eds.; Springer: Dordrecht, 1911; pp 264–266.https://doi.org/10.1007/978-94-009-2079-8_16
19

Meissner, W.; Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften 1933, 21, 787–788.

20

Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 1957, 108, 1175–1204.

21

Ginzburgand, V.; Landau, L. On the theory of superconductivity. Sov. Phys. JETP 1950, 20, 1064–1082.

22

Ginzburg, V. L. On superconductivity and superfluidity (what I have and have not managed to do), as well as on the “physical minimum” at the beginning of the 21st century. ChemPhysChem 2004, 5, 930–945.

23
Bogolubov, N. N.; Bogolubov, N. N. Jr. Introduction to Quantum Statistical Mechanics, 2nd ed.; World Scientific: Singapore, 2010.https://doi.org/10.1142/7623
24

Kapitza, P. Viscosity of liquid helium below the λ-point. Nature 1938, 141, 74.

25

Allen, J. F.; Misener, A. D. Flow of liquid helium II. Nature 1938, 141, 75.

26

Gasparini, F. M.; Kimball, M. O.; Mooney, K. P.; Diaz-Avila, M. Finite-size scaling of 4He at the superfluid transition. Rev. Mod. Phys. 2008, 80, 1009–1059.

27

Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.

28

Yan, Z. J.; Wang, D. D.; Ye, Z. J.; Fan, T.; Wu, G.; Deng, L. Y.; Yang, L.; Li, B. X.; Liu, J. W.; Ma, T. et al. Artificial aquaporin that restores wound healing of impaired cells. J. Am. Chem. Soc. 2020, 142, 15638–15643.

29
The Science/AAAS Custom Publishing Office. 125 questions: Exploration and discovery [Online].https://www.science.org/content/resource/125-questions-exploration-and-discovery (accessed May 14, 2021).
Nano Research
Pages 5230-5234
Cite this article:
Song B, Jiang L. Quantum essence of particle superfluidity. Nano Research, 2022, 15(6): 5230-5234. https://doi.org/10.1007/s12274-022-4121-0
Topics:

1034

Views

3

Crossref

3

Web of Science

3

Scopus

2

CSCD

Altmetrics

Received: 29 December 2021
Accepted: 29 December 2021
Published: 21 March 2022
© Tsinghua University Press 2022
Return