AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy

Yuan Liang1,3,4,§Yilin Liu2,§Pengpeng Lei1( )Zhen Zhang2( )Hongjie Zhang1,3,4,5( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Yuan Liang and Yilin Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Integrated multifunctional UCNPs/Au/Fe3O4-PVP nanocomposites are constructed by a simple modular assembly technology. UCNPs/Au/Fe3O4-PVP can achieve efficient cancer therapy via photothermal effect and photothermal enhanced nanozyme catalyzed reactions by magnet induction/NIR-II imaging-guided.

Abstract

Achieving efficient integration of cancer diagnosis and therapy is of great significance to human health, but the construction of a multifunctional intelligent therapy system still faces great challenges. In this study, we report an integrated multifunctional nanocomposite constructed by a simple modular assembly technology. The nanocomposites are composed of three different nanomaterials: Fe3O4, Au, and NaErF4:0.5%Tm@NaYF4 upconversion nanoparticles (UCNPs). In this design, Fe3O4 nanoparticles have nanozyme effect of peroxidase-like activity, which can react with H2O2 in the tumor microenvironment to generate hydroxyl radicals. Because of its magnetic properties, it can help the nanocomposites to aggregate under the induction of magnetic fields. Au nanoparticles exhibit nanozyme effect of glucose oxidase-like activity. It can catalyze the conversion of glucose to gluconic acid and H2O2. Ingeniously, the generated H2O2 provides a source of reactants for the reaction of the Fe3O4 nanozyme. In addition, the photothermal effect of Au nanoparticles under 808 nm irradiation further enhanced the nanozyme activity of Fe3O4 and Au nanoparticles. Besides, UCNPs can emit near-infrared (NIR)-II fluorescence under 808 nm irradiation, which can provide imaging-guided during cancer treatment. Then, the nanocomposites were further modified by poly(vinylpyrrolidone) (PVP) to obtain UCNPs/Au/Fe3O4-PVP with good biocompatibility and high-efficiency cancer treatment ability.

Electronic Supplementary Material

Download File(s)
12274_2023_5706_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Waks, A. G.; Winer, E. P. Breast cancer treatment: A review. JAMA 2019, 321, 288–300.

[2]

Wang, Y. G.; Xia, G. M.; Tan, M. M.; Wang, M. D.; Li, Y. Z.; Wang, H. M. H-dimeric nanospheres of amphipathic squaraine dye with an 81. 2% photothermal conversion efficiency for photothermal therapy. Adv. Funct. Mater. 2022, 32, 2113098.

[3]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

[4]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[5]
Feng, W.; Han, X. G.; Hu, H.; Chang, M. Q.; Ding, L.; Xiang, H. J.; Chen, Y.; Li, Y. H. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021, 12, 2203.
[6]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom Iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[7]

Kalashnikova, I.; Chung, S. J.; Nafiujjaman, M.; Hill, M. L.; Siziba, M. E.; Contag, C. H.; Kim, T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020, 10, 11863–11880.

[8]

Li, Y. H.; Sun, Y.; Cao, T. Y.; Su, Q. Q.; Li, Z. L.; Huang, M. X.; Ouyang, R. Z.; Chang, H. Z.; Zhang, S. P.; Miao, Y. Q. A cation-exchange controlled core-shell MnS@Bi2S3 theranostic platform for multimodal imaging guided radiation therapy with hyperthermia boost. Nanoscale 2017, 9, 14364–14375.

[9]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[10]

Liu, J. M.; Wang, A. Z.; Liu, S. H.; Yang, R. Q.; Wang, L. W.; Gao, F. E.; Zhou, H. G.; Yu, X.; Liu, J.; Chen, C. Y. A titanium nitride nanozyme for PH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

[11]

Liu, Q. Q.; Tian, J. W.; Liu, J. J.; Zhu, M. S.; Gao, Z. X.; Hu, X. Y.; Midgley, A. C.; Wu, J.; Wang, X. Y.; Kong, D. L. et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv. Mater. 2021, 33, 2103128.

[12]

Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

[13]

Wang, D. D.; Wu, H. H.; Wang, C. L.; Gu, L.; Chen, H. Z.; Jana, D.; Feng, L. L.; Liu, J. W.; Wang, X. Y.; Xu, P. P. et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angew. Chem., Int. Ed. 2021, 60, 3001–3007.

[14]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[15]

Wen, M.; Ouyang, J.; Wei, C. W.; Li, H.; Chen, W. S.; Liu, Y. N. Artificial enzyme catalyzed cascade reactions: Antitumor immunotherapy reinforced by NIR-II light. Angew. Chem., Int. Ed. 2019, 58, 17425–17432.

[16]

Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021, 12, 1436.

[17]

Yang, Y.; Zhu, D. M.; Liu, Y.; Jiang, B.; Jiang, W.; Yan, X. Y.; Fan, K. L. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 2020, 12, 13548–13557.

[18]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[19]

Lei, P. P.; An, R.; Zhang, P.; Yao, S.; Song, S. Y.; Dong, L. L.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. Ultrafast synthesis of ultrasmall poly(Vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/Photothermal-imaging-guided photothermal therapy. Adv. Funct. Mater. 2017, 27, 1702018.

[20]

Liu, X. Y.; Yang, Y.; Wang, X. Y.; Liu, X.; Cheng, H. L.; Wang, P. S.; Shen, Y. H.; Xie, A. J.; Zhu, M. Z. Self-assembled Au4Cu4/Au25 NCs@liposome tumor nanotheranostics with PT/fluorescence imaging-guided synergetic PTT/PDT. J. Mater. Chem. B 2021, 9, 6396–6405.

[21]

Liu, X. J.; Zhang, M. Y.; Yan, D. W.; Deng, G. Y.; Wang, Q.; Li, C. L.; Zhao, L. J.; Lu, J. A smart theranostic agent based on Fe-HPPy@Au/DOX for CT imaging and PTT/chemotherapy/CDT combined anticancer therapy. Biomater. Sci. 2020, 8, 4067–4072.

[22]

Mei, Z. H.; Gao, D. Y.; Hu, D. H.; Zhou, H. C.; Ma, T.; Huang, L.; Liu, X.; Zheng, R. Q.; Zheng, H. R.; Zhao, P. et al. Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods. Biomaterials 2020, 251, 120092.

[23]

Zhang, Y. Y.; Lv, F.; Cheng, Y. R.; Yuan, Z. P.; Yang, F.; Liu, C. H.; Cao, Y.; Zhang, K.; Lu, H. T.; Zada, S. et al. Pd@Au bimetallic nanoplates decorated mesoporous MnO2 for synergistic nucleus-targeted NIR-II photothermal and hypoxia-relieved photodynamic therapy. Adv. Healthcare Mater. 2020, 9, 1901528.

[24]

Wang, J. X.; Yao, C. J.; Shen, B.; Zhu, X. H.; Li, Y.; Shi, L. Y.; Zhang, Y.; Liu, J. L.; Wang, Y. L.; Sun, L. N. Upconversion-magnetic carbon sphere for near infrared light-triggered bioimaging and photothermal therapy. Theranostics 2019, 9, 608–619.

[25]

Dibaba, S. T.; Xie, Y.; Xi, W. S.; Bednarkiewicz, A.; Ren, W.; Sun, L. N. Nd3+-sensitized upconversion nanoparticle coated with antimony shell for bioimaging and photothermal therapy in vitro using single laser irradiation. J. Rare Earths 2022, 40, 862–869.

[26]

De Marchi, S.; Vázquez-Iglesias, L.; Bodelón, G.; Pérez-Juste, I.; Fernández, L. Á.; Pérez-Juste, J.; Pastoriza-Santos, I. Programmable modular assembly of functional proteins on raman-encoded Zeolitic Imidazolate Framework-8 (ZIF-8) nanoparticles as SERS tags. Chem. Mater. 2020, 32, 5739–5749.

[27]

Guo, J. L.; Tardy, B. L.; Christofferson, A. J.; Dai, Y. L.; Richardson, J. J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J. W.; Dagastine, R. R. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 2016, 11, 1105–1111.

[28]

Guo, J. M.; Yu, Y. L.; Zhu, W.; Serda, R. E.; Franco, S.; Wang, L.; Lei, Q.; Agola, J. O.; Noureddine, A.; Ploetz, E. et al. Modular assembly of red blood cell superstructures from metal-organic framework nanoparticle-based building blocks. Adv. Funct. Mater. 2021, 31, 2005935.

[29]

Pazos-Perez, N.; Fitzgerald, J. M.; Giannini, V.; Guerrini, L.; Alvarez-Puebla, R. A. Modular assembly of plasmonic core-satellite structures as highly brilliant SERS-encoded nanoparticles. Nanoscale Adv. 2019, 1, 122–131.

[30]

Wu, H. M.; Zhang, X. R.; Wei, C. J.; Wang, C. C.; Jiang, M.; Hong, X.; Xu, Z. K.; Chen, D. J.; Huang, X. J. Modular assembly of enzyme loaded nanoparticles in 3D hollow fiber electrode for electrochemical sensing. Chem. Eng. J. 2021, 421, 129721.

[31]

Xu, L.; Xu, S. J.; Wang, H. X.; Zhang, J.; Chen, Z.; Pan, L. H.; Wang, J. G.; Wei, X. Y.; Xie, H. Y.; Zhou, L. et al. Enhancing the efficacy and safety of doxorubicin against hepatocellular carcinoma through a modular assembly approach: The combination of polymeric prodrug design, nanoparticle encapsulation, and cancer cell-specific drug targeting. ACS Appl. Mater. Interfaces 2018, 10, 3229–3240.

[32]

Zhang, Z.; Jayakumar, M. K. G.; Shikha, S.; Zhang, Y.; Zheng, X.; Zhang, Y. Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 12549–12556.

[33]

Zhou, A. W.; Du, J. J.; Jiao, M. Y.; Xie, D. P.; Wang, Q. Q.; Xue, L. J.; Ju, C. Y.; Hua, Z. C.; Zhang, C. Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. J. Control. Release 2019, 304, 111–124.

Nano Research
Pages 9826-9834
Cite this article:
Liang Y, Liu Y, Lei P, et al. Tumor microenvironment-responsive modular integrated nanocomposites for magnetically targeted and photothermal enhanced catalytic therapy. Nano Research, 2023, 16(7): 9826-9834. https://doi.org/10.1007/s12274-023-5706-y
Topics:

889

Views

10

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 15 February 2023
Revised: 30 March 2023
Accepted: 02 April 2023
Published: 22 April 2023
© Tsinghua University Press 2023
Return