AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nano-imaging agents for brain diseases: Environmentally responsive imaging and therapy

Fuming Liang1,2Qing You1,3Xiaopeng Ma4Huayi Wang1,3Chen Wang1,3Zhaohui He2( )Yanlian Yang1,3( )Ling Zhu1,3( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
The First Affiliated Hospital University of Science and Technology of China, Anhui Provincial Hospital, Hefei 230000, China
Show Author Information

Graphical Abstract

Nano-imaging agents are characterized by blood-brain barrier crossing and can be used for environmentally responsive imaging and treatment of brain diseases.

Abstract

Precise imaging is essential for the accurate diagnosis and surgical guidance of brain diseases but it is challenging due to the difficulties in crossing the blood-brain barrier (BBB), the difficulties in disease lesion targeting, and the limited contrast in the brain environment. Nano-imaging agents were characterized by functionalized modifications, high contrast, small size, and high biocompatibility, thus providing advantages in BBB crossing, brain targeting, imaging resolution, and real-time monitoring, holding great potential in brain disease imaging. Specific characteristics in brain environment and brain diseases (e.g., marker proteins on the BBB, the pathogenic proteins in the neurodegenerative diseases or brain tumors, and the tumor and inflammatory microenvironment) provide opportunities for the functionalized nano-imaging agents to improve BBB crossing and disease targeting. Moreover, the versatile nano-imaging agents are endowed with therapeutic agents to facilitate the theranostics of brain diseases. Here, we summarized the common materials and imaging techniques of nano-imaging agents and their imaging treatment applications. We discussed their BBB penetration, environmental response for disease targeting, and therapeutic effects. We also provided insights on the advantages, challenges, and application of nano-imaging agents in detecting and treating brain diseases such as neurodegenerative diseases, brain tumors, stroke, and traumatic brain injury. These discussions will help develop nano-imaging agents-based theranostic platforms for the precise diagnosis and treatment of brain diseases.

References

[1]

Jansen, I. G. H.; Berkhemer, O. A.; Yoo, A. J.; Vos, J. A.; Lycklama, A. N. G. J.; Sprengers, M. E. S.; van Zwam, W. H.; Schonewille, W. J.; Boiten, J.; van Walderveen, M. A. A. et al. Comparison of CTA- and DSA-based collateral flow assessment in patients with anterior circulation stroke. AJNR Am. J. Neuroradiol. 2016, 37, 2037–2042.

[2]

Czap, A. L.; Sheth, S. A. Overview of imaging modalities in stroke. Neurology 2021, 97, S42–S51.

[3]

Terstappen, G. C.; Meyer, A. H.; Bell, R. D.; Zhang, W. D. Strategies for delivering therapeutics across the blood-brain barrier. Nat. Rev. Drug Discov. 2021, 20, 362–383.

[4]

Dube, T.; Kumar, N.; Bishnoi, M.; Panda, J. J. Dual blood-brain barrier-glioma targeting peptide-poly(levodopamine) hybrid nanoplatforms as potential near infrared phototheranostic agents in glioblastoma. Bioconjug. Chem. 2021, 32, 2014–2031.

[5]

Kim, H. S.; Seo, M.; Park, T. E.; Lee, D. Y. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. J. Nanobiotechnology 2022, 20, 14.

[6]

Zhu, M. T.; Sheng, Z. H.; Jia, Y. L.; Hu, D. H.; Liu, X.; Xia, X. Y.; Liu, C. B.; Wang, P.; Wang, X. B.; Zheng, H. R. Indocyanine green-holo-transferrin nanoassemblies for tumor-targeted dual-modal imaging and photothermal therapy of glioma. ACS Appl. Mater. Interfaces 2017, 9, 39249–39258.

[7]

Dube, T.; Kompella, U. B.; Panda, J. J. Near infrared triggered chemo-PTT-PDT effect mediated by glioma directed twin functional-chimeric peptide-decorated gold nanoroses. J. Photochem. Photobiol. B 2022, 228, 112407.

[8]

Wan, Q.; Zou, C.; Hu, D. H.; Zhou, J.; Chen, M. J.; Tie, C. J.; Qiao, Y. Z.; Yan, F.; Cheng, C. L.; Sheng, Z. H. et al. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater. Sci. 2019, 7, 3007–3015.

[9]

Miao, J.; Miao, M. Q.; Jiang, Y.; Zhao, M.; Li, Q.; Zhang, Y.; An, Y.; Pu, K. Y.; Miao, Q. Q. An activatable NIR-II fluorescent reporter for in vivo imaging of Amyloid-β plaques. Angew. Chem., Int. Ed. 2023, 62, e202216351.

[10]

Elbatrawy, A. A.; Hyeon, S. J.; Yue, N.; Osman, E. E. A.; Choi, S. H.; Lim, S.; Kim, Y. K.; Ryu, H.; Cui, M. C.; Nam, G. “Turn-on” quinoline-based fluorescent probe for selective imaging of tau aggregates in Alzheimer’s disease: Rational design, synthesis, and molecular docking. ACS Sens. 2021, 6, 2281–2289.

[11]

Su, J.; Yao, Z. P.; Chen, Z. X.; Zhou, S. S.; Wang, Z.; Xia, H. P.; Liu, S. Q.; Wu, Y. F. TfR Aptamer enhanced blood-brain barrier penetration of biomimetic nanocomplexes for intracellular transglutaminase 2 imaging and silencing in glioma. Small 2022, 18, 2203448.

[12]

Deng, G. J.; Peng, X. H.; Sun, Z. H.; Zheng, W.; Yu, J.; Du, L. L.; Chen, H. J.; Gong, P.; Zhang, P. F.; Cai, L. T. et al. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 2020, 14, 11452–11462.

[13]

Chen, S. Y.; Miao, H.; Jiang, X. Y.; Sun, P. F.; Fan, Q. L.; Huang, W. Starlike polymer brush-based ultrasmall nanoparticles with simultaneously improved NIR-II fluorescence and blood circulation for efficient orthotopic glioblastoma imaging. Biomaterials 2021, 275, 120916.

[14]

Jiang, Y. Y.; Upputuri, P. K.; Xie, C.; Lyu, Y.; Zhang, L. L.; Xiong, Q. H.; Pramanik, M.; Pu, K. Y. Broadband absorbing semiconducting polymer nanoparticles for photoacoustic imaging in second near-infrared window. Nano Lett. 2017, 17, 4964–4969.

[15]

Jia, G.; Han, Y.; An, Y. L.; Ding, Y. N.; He, C.; Wang, X. H.; Tang, Q. S. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316.

[16]

Liu, X. G.; Zhang, L.; Lu, S.; Liu, D. Q.; Zhang, L. X.; Yu, X. L.; Liu, R. T. Multifunctional superparamagnetic iron oxide nanoparticles conjugated with Aβ oligomer-specific scFv antibody and class a scavenger receptor activator show early diagnostic potentials for Alzheimer’s disease. Int. J. Nanomedicine 2020, 15, 4919–4932.

[17]

Tang, C. M.; Wang, C.; Zhang, Y.; Xue, L. J.; Li, Y. Y.; Ju, C. Y.; Zhang, C. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019, 19, 4470–4477.

[18]

Mishra, S. K.; Khushu, S.; Singh, A. K.; Gangenahalli, G. Homing and tracking of iron oxide labelled mesenchymal stem cells after infusion in traumatic brain injury mice: A longitudinal in vivo MRI study. Stem Cell Rev. Rep. 2018, 14, 888–900.

[19]

Xu, H. L.; Yang, J. J.; ZhuGe, D. L.; Lin, M. T.; Zhu, Q. Y.; Jin, B. H.; Tong, M. Q.; Shen, B. X.; Xiao, J.; Zhao, Y. Z. Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv. Healthc. Mater. 2018, 7, 1701130.

[20]

Zhang, J.; Chen, N.; Wang, H.; Gu, W.; Liu, K.; Ai, P. H.; Yan, C. X.; Ye, L. Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J. Colloid Interface Sci. 2016, 469, 86–92.

[21]

Wang, H.; Mu, Q. X.; Revia, R.; Wang, K.; Tian, B. W.; Lin, G. Y.; Lee, W.; Hong, Y. K.; Zhang, M. Q. Iron oxide-carbon core–shell nanoparticles for dual-modal imaging-guided photothermal therapy. J. Control. Release 2018, 289, 70–78.

[22]

Richard, S.; Saric, A.; Boucher, M.; Slomianny, C.; Geffroy, F.; Mériaux, S.; Lalatonne, Y.; Petit, P. X.; Motte, L. Antioxidative theranostic iron oxide nanoparticles toward brain tumors imaging and ROS production. ACS Chem. Biol. 2016, 11, 2812–2819.

[23]

Sukumar, U. K.; Bose, R. J. C.; Malhotra, M.; Babikir, H. A.; Afjei, R.; Robinson, E.; Zeng, Y. T.; Chang, E.; Habte, F.; Sinclair, R. et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019, 218, 119342.

[24]

Liu, H.; Chen, X.; Xue, W.; Chu, C. C.; Liu, Y.; Tong, H. P.; Du, X. S.; Xie, T.; Liu, G.; Zhang, W. G. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging. Int. J. Nanomedicine 2016, 11, 5099–5108.

[25]

Meng, X. X.; Wan, J. Q.; Jing, M.; Zhao, S. G.; Cai, W.; Liu, E. Z. Specific targeting of gliomas with multifunctional superparamagnetic iron oxide nanoparticle optical and magnetic resonance imaging contrast agents. Acta Pharmacol. Sin. 2007, 28, 2019–2026.

[26]

Karimian-Jazi, K.; Münch, P.; Alexander, A.; Fischer, M.; Pfleiderer, K.; Piechutta, M.; Karreman, M. A.; Solecki, G. M.; Berghoff, A. S.; Friedrich, M. et al. Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM). Theranostics 2020, 10, 1873–1883.

[27]

Bernal, G. M.; LaRiviere, M. J.; Mansour, N.; Pytel, P.; Cahill, K. E.; Voce, D. J.; Kang, S. J.; Spretz, R.; Welp, U.; Noriega, S. E. et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine 2014, 10, 149–157.

[28]

Lei, H. L.; Nan, X.; Wang, Z. Y.; Gao, L.; Xie, L. S.; Zou, C.; Wan, Q.; Pan, D.; Beauchamp, N.; Yang, X. M. et al. Stem cell labeling with superparamagnetic iron oxide nanoparticles using focused ultrasound and magnetic resonance imaging tracking. J. Nanosci. Nanotechnol. 2015, 15, 2605–2612.

[29]

Liu, H. R.; Sun, R.; Wang, L.; Chen, X. Y.; Li, G. L.; Cheng, Y.; Zhai, G. H.; Bay, B. H.; Yang, F.; Gu, N. et al. Biocompatible iron oxide nanoring-labeled mesenchymal stem cells: An innovative magnetothermal approach for cell tracking and targeted stroke therapy. ACS Nano 2022, 16, 18806–18821.

[30]

Pan, Y. B.; Wang, S. Q.; He, X. C.; Tang, W. W.; Wang, J. H.; Shao, A. W.; Zhang, J. M. A combination of glioma in vivo imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. J. Mater. Chem. B 2019, 7, 7683–7689.

[31]

Sun, D.; Liu, K. J.; Li, Y.; Xie, T.; Zhang, M.; Liu, Y.; Tong, H. P.; Guo, Y.; Zhang, Q. H.; Liu, H. et al. Intrinsically bioactive manganese-eumelanin nanocomposites mediated antioxidation and anti-neuroinflammation for targeted theranostics of traumatic brain injury. Adv. Healthc. Mater. 2022, 11, 2200517.

[32]

Zhao, Q. Q.; Du, W. X.; Zhou, L. L.; Wu, J. R.; Zhang, X. X.; Wei, X. E.; Wang, S. J.; Huang, Y.; Li, Y. H. Transferrin-enabled blood-brain barrier crossing manganese-based nanozyme for rebalancing the reactive oxygen species level in ischemic stroke. Pharmaceutics 2022, 14, 1122.

[33]

Terry, A. V. Jr.; Beck, W. D.; Lin, P. C.; Callahan, P. M.; Rudic, R. D.; Hamrick, M. W. Manganese-enhanced magnetic resonance imaging method detects age-related impairments in axonal transport in mice and attenuation of the impairments by a microtubule-stabilizing compound. Brain Res. 2022, 1789, 147947.

[34]

Hou, W. J.; Jiang, Y. Z.; Xie, G. C.; Zhao, L.; Zhao, F. S.; Zhang, X. J.; Sun, S. K.; Yu, C. S.; Pan, J. B. Biocompatible BSA-MnO2 nanoparticles for in vivo timely permeability imaging of blood-brain barrier and prediction of hemorrhage transformation in acute ischemic stroke. Nanoscale 2021, 13, 8531–8542.

[35]

Xiao, T. T.; He, M. J.; Xu, F.; Fan, Y.; Jia, B. Y.; Shen, M. W.; Wang, H.; Shi, X. Y. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano 2021, 15, 20377–20390.

[36]

Jiang, S. Q.; Li, X. H.; Zhang, F.; Mao, J. J.; Cao, M. H.; Zhang, X. N.; Huang, S. M.; Duan, X. H.; Shen, J. Manganese dioxide-based nanocarrier delivers paclitaxel to enhance chemotherapy against orthotopic glioma through hypoxia relief. Small Methods 2022, 6, 2101531.

[37]

Lai, J. X.; Wang, T. J.; Wang, H.; Shi, F. Q.; Gu, W.; Ye, L. MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma. Mikrochim. Acta 2018, 185, 244.

[38]

Tan, J. Y.; Duan, X. H.; Zhang, F.; Ban, X. H.; Mao, J. J.; Cao, M. H.; Han, S. S.; Shuai, X. T.; Shen, J. Theranostic nanomedicine for synergistic chemodynamic therapy and chemotherapy of orthotopic glioma. Adv. Sci. 2020, 7, 2003036.

[39]

Wang, R. N.; Zhang, X. R.; Huang, J. Y.; Feng, K. H.; Zhang, Y. J.; Wu, J.; Ma, L.; Zhu, A. R.; Di, L. Q. Bio-fabricated nanodrugs with chemo-immunotherapy to inhibit glioma proliferation and recurrence. J. Control. Release 2023, 354, 572–587.

[40]

Xu, K.; Zhao, Z. H.; Zhang, J. F.; Xue, W.; Tong, H. P.; Liu, H.; Zhang, W. G. Albumin-stabilized manganese-based nanocomposites with sensitive tumor microenvironment responsivity and their application for efficient siRNA delivery in brain tumors. J. Mater. Chem. B 2020, 8, 1507–1515.

[41]

Liang, K. C.; Li, Z. C.; Luo, Y.; Zhang, Q. H.; Yin, F. F.; Xu, L. J.; Chen, H. R.; Wang, H. Intelligent nanocomposites with intrinsic blood-brain-barrier crossing ability designed for highly specific MR imaging and sonodynamic therapy of glioblastoma. Small 2020, 16, 1906985.

[42]

Liu, H. M.; Zhou, M. J.; Sheng, Z. H.; Chen, Y.; Yeh, C. K.; Chen, W. T.; Liu, J.; Liu, X.; Yan, F.; Zheng, H. R. Theranostic nanosensitizers for highly efficient MR/fluorescence imaging-guided sonodynamic therapy of gliomas. J. Cell. Mol. Med. 2018, 22, 5394–5405.

[43]

Qin, R. X.; Li, S.; Qiu, Y. W.; Feng, Y. S.; Liu, Y. Q.; Ding, D. D.; Xu, L. H.; Ma, X. Q.; Sun, W. J.; Chen, H. M. Carbonized paramagnetic complexes of Mn(II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nat. Commun. 2022, 13, 1938.

[44]

Chen, N.; Shao, C.; Li, S.; Wang, Z. H.; Qu, Y. M.; Gu, W.; Yu, C. J.; Ye, L. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J. Colloid Interface Sci. 2015, 457, 27–34.

[45]

Rodriguez, O.; Schaefer, M. L.; Wester, B.; Lee, Y. C.; Boggs, N.; Conner, H. A.; Merkle, A. C.; Fricke, S. T.; Albanese, C.; Koliatsos, V. E. Manganese-enhanced magnetic resonance imaging as a diagnostic and dispositional tool after mild-moderate blast traumatic brain injury. J. Neurotrauma 2016, 33, 662–671.

[46]

Song, G. R.; Zhang, B. R.; Song, L. Y.; Li, W. Z.; Liu, C. X.; Chen, L. S.; Liu, A. H. MnCO3@BSA-ICG nanoparticles as a magnetic resonance/photoacoustic dual-modal contrast agent for functional imaging of acute ischemic stroke. Biochem. Biophys. Res. Commun. 2022, 614, 125–131.

[47]

Kim, J. H.; Ha, T. L.; Im, G. H.; Yang, J.; Seo, S. W.; Lee, I. S.; Lee, J. H. Magnetic resonance imaging of amyloid plaques using hollow manganese oxide nanoparticles conjugated with antibody Aβ1-40 in a transgenic mouse model. Neuroreport 2013, 24, 16–21.

[48]

Zhang, L. R.; Chen, D. Y.; Zhang, J. J.; Cai, R.; Xu, L. X.; Yu, N. H.; Zhang, S. Y.; Yan, H.; Jiang, J. Z.; Du, F. Y. et al. A novel cholchicine/gadolinium-loading tubulin self-assembly nanocarrier for MR imaging and chemotherapy of glioma. Nanotechnology 2020, 31, 255601.

[49]

Shen, Z. Y.; Liu, T.; Yang, Z.; Zhou, Z. J.; Tang, W.; Fan, W. P.; Liu, Y. J.; Mu, J.; Li, L.; Bregadze, V. I. et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 2020, 235, 119783.

[50]

Zhang, H.; Wang, T. J.; Zheng, Y. Y.; Yan, C. X.; Gu, W.; Ye, L. Comparative toxicity and contrast enhancing assessments of Gd2O3@BSA and MnO2@BSA nanoparticles for MR imaging of brain glioma. Biochem. Biophys. Res. Commun. 2018, 499, 488–492.

[51]

Bony, B. A.; Miller, H. A.; Tarudji, A. W.; Gee, C. C.; Sarella, A.; Nichols, M. G.; Kievit, F. M. Ultrasmall mixed Eu-Gd oxide nanoparticles for multimodal fluorescence and magnetic resonance imaging of passive accumulation and retention in TBI. ACS Omega 2020, 5, 16220–16227.

[52]

Hubert, V.; Hristovska, I.; Karpati, S.; Benkeder, S.; Dey, A.; Dumot, C.; Amaz, C.; Chounlamountri, N.; Watrin, C.; Comte, J. C. et al. Multimodal imaging with NanoGd reveals spatiotemporal features of neuroinflammation after experimental stroke. Adv. Sci. 2021, 8, 2101433.

[53]

Wang, X. L.; Chan, H. N.; Desbois, N.; Gros, C. P.; Bolze, F.; Li, Y. H.; Li, H. W.; Wong, M. S. Multimodal theranostic cyanine-conjugated gadolinium(III) complex for in vivo imaging of amyloid-β in an Alzheimer’s disease mouse model. ACS Appl. Mater. Interfaces 2021, 13, 18525–18532.

[54]

Zhang, X. H.; Ye, D. Z.; Yang, L. H.; Yue, Y. M.; Sultan, D.; Pacia, C. P.; Pang, H.; Detering, L.; Heo, G. S.; Luehmann, H. et al. Magnetic resonance imaging-guided focused ultrasound-based delivery of radiolabeled copper nanoclusters to diffuse intrinsic pontine glioma. ACS Appl. Nano. Mater. 2020, 3, 11129–11134.

[55]

Shi, X. D.; Shen, L. T. Integrin αvβ3 receptor targeting PET/MRI dual-modal imaging probe based on the 64Cu labeled manganese ferrite nanoparticles. J. Inorg. Biochem. 2018, 186, 257–263.

[56]

Liu, Y. J.; Yang, Z.; Huang, X. L.; Yu, G. C.; Wang, S.; Zhou, Z. J.; Shen, Z. Y.; Fan, W. P.; Liu, Y.; Davisson, M. et al. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano 2018, 12, 8129–8137.

[57]

Gao, X.; Pan, H. J.; Han, Y. C.; Feng, L. X.; Xiong, J. P.; Luo, S. Z.; Li, H. M. Quantitative imaging of amyloid beta peptide (Aβ) in Alzheimer’s brain tissue by laser ablation ICP-MS using gold nanoparticles as labels. Anal. Chim. Acta 2021, 1148, 238197.

[58]

Chan, M. H.; Chen, W.; Li, C. H.; Fang, C. Y.; Chang, Y. C.; Wei, D. H.; Liu, R. S.; Hsiao, M. An advanced in situ magnetic resonance imaging and ultrasonic theranostics nanocomposite platform: Crossing the blood-brain barrier and improving the suppression of glioblastoma using iron-platinum nanoparticles in nanobubbles. ACS Appl. Mater. Interfaces 2021, 13, 26759–26769.

[59]

Zhao, L. Z.; Li, Y. J.; Zhu, J. Y.; Sun, N.; Song, N. N.; Xing, Y.; Huang, H.; Zhao, J. H. Chlorotoxin peptide-functionalized polyethylenimine-entrapped gold nanoparticles for glioma SPECT/CT imaging and radionuclide therapy. J. Nanobiotechnology 2019, 17, 30.

[60]

Chen, M.; Zhang, L.; Gao, M. X.; Zhang, X. M. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Talanta 2017, 172, 176–181.

[61]

Basu, S. S.; McMinn, M. H.; Gimenéz-Cassina Lopéz, B.; Regan, M. S.; Randall, E. C.; Clark, A. R.; Cox, C. R.; Agar, N. Y. R. Metal oxide laser ionization mass spectrometry imaging (MOLI MSI) using cerium(IV) oxide. Anal. Chem. 2019, 91, 6800–6807.

[62]

Shao, C.; Li, S.; Gu, W.; Gong, N. Q.; Zhang, J.; Chen, N.; Shi, X. Y.; Ye, L. Multifunctional gadolinium-doped manganese carbonate nanoparticles for targeted MR/fluorescence imaging of tiny brain gliomas. Anal. Chem. 2015, 87, 6251–6257.

[63]

Li, J.; Kong, J. L.; Ma, S. H.; Li, J. C.; Mao, M. R.; Chen, Z. T.; Zhang, J. X.; Chang, Y. N.; Yuan, H.; Liu, T. et al. Exosome-coated 10B carbon dots for precise boron neutron capture therapy in a mouse model of glioma in situ. Adv. Funct. Mater. 2021, 31, 2100969.

[64]

Tak, K.; Sharma, R.; Dave, V.; Jain, S.; Sharma, S. Clitoria ternatea mediated synthesis of graphene quantum dots for the treatment of Alzheimer’s disease. ACS Chem. Neurosci. 2020, 11, 3741–3748.

[65]

Chen, C. Q.; Cai, Q.; Luo, F.; Dong, N.; Guo, L. H.; Qiu, B.; Lin, Z. Y. Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots. Anal. Chem. 2019, 91, 15915–15921.

[66]

Huang, D. H.; Cao, Y. H.; Yang, X.; Liu, Y. Y.; Zhang, Y. J.; Li, C. Y.; Chen, G. C.; Wang, Q. B. A nanoformulation-mediated multifunctional stem cell therapy with improved beta-amyloid clearance and neural regeneration for Alzheimer’s disease. Adv. Mater. 2021, 33, 2006357.

[67]

Song, D.; Zhu, M. T.; Chi, S. Y.; Xia, L.; Li, Z.; Liu, Z. H. Sensitizing the luminescence of lanthanide-doped nanoparticles over 1500 nm for high-contrast and deep imaging of brain injury. Anal. Chem. 2021, 93, 7949–7957.

[68]

Ag Seleci, D.; Maurer, V.; Barlas, F. B.; Porsiel, J. C.; Temel, B.; Ceylan, E.; Timur, S.; Stahl, F.; Scheper, T.; Garnweitner, G. Transferrin-decorated niosomes with integrated InP/ZnS quantum dots and magnetic iron oxide nanoparticles: Dual targeting and imaging of glioma. Int. J. Mol. Sci. 2021, 22, 4556.

[69]

Lv, Z. J.; Jin, L. H.; Cao, Y.; Zhang, H.; Xue, D. Z.; Yin, N.; Zhang, T. Q.; Wang, Y. H.; Liu, J. H.; Liu, X. G. et al. A nanotheranostic agent based on Nd3+-doped YVO4 with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma. Light Sci. Appl. 2022, 11, 116.

[70]

Liu, Z.; Yun, B. F.; Han, Y. B.; Jiang, Z. L.; Zhu, H. Q.; Ren, F.; Li, Z. Dye-sensitized rare earth nanoparticles with up/down conversion luminescence for on-demand gas therapy of glioblastoma guided by NIR-II fluorescence imaging. Adv. Healthc. Mater. 2022, 11, 2102042.

[71]

Wang, Z. J.; Zhang, M.; Chi, S. Y.; Zhu, M. T.; Wang, C. X.; Liu, Z. H. Brain tumor cell membrane-coated lanthanide-doped nanoparticles for NIR-IIb luminescence imaging and surgical navigation of glioma. Adv. Healthc. Mater. 2022, 11, 2200521.

[72]

Li, C. B.; Jiang, G. Y.; Yu, J.; Ji, W. W.; Liu, L. X.; Zhang, P. F.; Du, J.; Zhan, C. L.; Wang, J. G.; Tang, B. Z. Fluorination enhances NIR-II emission and photothermal conversion efficiency of phototheranostic agents for imaging-guided cancer therapy. Adv. Mater. 2023, 35, 2208229.

[73]

Zhu, X. L.; Ye, H. Y.; Liu, J. W.; Yu, R. Q.; Jiang, J. H. Multivalent self-assembled DNA polymer for tumor-targeted delivery and live cell imaging of telomerase activity. Anal. Chem. 2018, 90, 13188–13192.

[74]

Qi, R. L.; Zhao, H.; Zhou, X.; Liu, J.; Dai, N.; Zeng, Y.; Zhang, E. D.; Lv, F. T.; Huang, Y. M.; Liu, L. B. et al. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions. Angew. Chem., Int. Ed. 2021, 60, 5759–5765.

[75]

García-Belda, P.; Prima-García, H.; Aliena-Valero, A.; Castelló-Ruiz, M.; Ulloa-Navas, M. J.; Ten-Esteve, A.; Martí-Bonmatí, L.; Salom, J. B.; García-Verdugo, J. M.; Gil-Perotín, S. Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain. Nanomedicine 2022, 39, 102464.

[76]

Huang, Y. P.; Zhang, B. L.; Xie, S. B.; Yang, B. N.; Xu, Q.; Tan, J. Superparamagnetic iron oxide nanoparticles modified with tween 80 pass through the intact blood-brain barrier in rats under magnetic field. ACS Appl. Mater. Interfaces 2016, 8, 11336–11341.

[77]

Wu, V. M.; Huynh, E.; Tang, S. A.; Uskoković, V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater. 2019, 88, 422–447.

[78]

Li, B. Y.; Chen, X.; Qiu, W.; Zhao, R. R.; Duan, J. Z.; Zhang, S. J.; Pan, Z. W.; Zhao, S. L.; Guo, Q. D.; Qi, Y. H. et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome-conjugated magnetic nanoparticles for glioblastoma therapy. Adv. Sci. 2022, 9, e2105451.

[79]

Liu, T.; Wang, Y.; Lu, L. J.; Liu, Y. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells. J. Nanobiotechnology 2022, 20, 159.

[80]

Kanda, T.; Oba, H.; Toyoda, K.; Kitajima, K.; Furui, S. Brain gadolinium deposition after administration of gadolinium-based contrast agents. Jpn. J. Radiol. 2016, 34, 3–9.

[81]

Perlman, O.; Weitz, I. S.; Azhari, H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys. Med. Biol. 2015, 60, 5767–5783.

[82]

Shi, H.; Yan, R. Q.; Wu, L. Y.; Sun, Y. D.; Liu, S.; Zhou, Z. Y.; He, J.; Ye, D. J. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomater. 2018, 72, 256–265.

[83]

Li, M.; Wang, Y.; Li, T.; Zhang, J.; Wang, X.; Luo, J.; You, M.; Yang, T.; Deng, Y. B.; Yang, H. et al. Albumin-templated platinum(II) sulfide nanodots for size-dependent cancer theranostics. Acta Biomater. 2023, 155, 564–574.

[84]

You, Q.; Zhang, K. Y.; Liu, J. Y.; Liu, C. L.; Wang, H. Y.; Wang, M. T.; Ye, S. Y.; Gao, H. Q.; Lv, L. T.; Wang, C. et al. Persistent regulation of tumor hypoxia microenvironment via a bioinspired Pt-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy. Adv. Sci. 2020, 7, 1903341.

[85]

Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 2021, 21, 37–50.

[86]

Yu, J.; He, X. D.; Zhang, Q. F.; Zhou, D. F.; Wang, Z. G.; Huang, Y. B. Iodine conjugated Pt(IV) nanoparticles for precise chemotherapy with iodine-pt guided computed tomography imaging and biotin-mediated tumor-targeting. ACS Nano 2022, 16, 6835–6846.

[87]

Yang, Y. H.; Guo, L. N.; Wang, Z.; Liu, P.; Liu, X. J.; Ding, J. S.; Zhou, W. H. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 2021, 264, 120390.

[88]

Tang, S. H.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503.

[89]

Mansur, A. A. P.; Mansur, H. S.; Carvalho, S. M.; Caires, A. J. One-pot aqueous synthesis of fluorescent Ag-In-Zn-S quantum dot/polymer bioconjugates for multiplex optical bioimaging of glioblastoma cells. Contrast Media Mol. Imaging 2017, 2017, 3896107.

[90]

Zhou, X. T.; You, M.; Wang, F. H.; Wang, Z. Z.; Gao, X. F.; Jing, C.; Liu, J. M.; Guo, M. Y.; Li, J. Y.; Luo, A. P. et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate MicroRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv. Mater. 2021, 33, 2100556.

[91]

Lord, M. S.; Berret, J. F.; Singh, S.; Vinu, A.; Karakoti, A. S. Redox active cerium oxide nanoparticles: Current status and burning issues. Small 2021, 17, 2102342.

[92]

Hu, H.; Huang, P.; Weiss, O. J.; Yan, X. F.; Yue, X. Y.; Zhang, M. G.; Tang, Y. X.; Nie, L. M.; Ma, Y.; Niu, G. et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters. Biomaterials 2014, 35, 9868–9876.

[93]

Zhang, L.; Jiang, C. J.; Li, B.; Liu, Z. W.; Gu, B. X.; He, S. M.; Li, P. L.; Sun, Y.; Song, S. L. A core–shell Au@Cu2−xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy. J. Nanobiotechnology 2021, 19, 410.

[94]

Chen, L. L.; Zhao, L.; Wang, Z. G.; Liu, S. L.; Pang, D. W. Near-infrared-II quantum dots for in vivo imaging and cancer therapy. Small 2022, 18, 2104567.

[95]

Kumar, V. B.; Sher, I.; Rencus-Lazar, S.; Rotenstreich, Y.; Gazit, E. Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 2023, 19, 2205754.

[96]

Chung, S.; Revia, R. A.; Zhang, M. Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, 1904362.

[97]

Zhang, X. N.; Li, S. S.; Ma, H. Z.; Wang, H.; Zhang, R. P.; Zhang, X. D. Activatable NIR-II organic fluorescent probes for bioimaging. Theranostics 2022, 12, 3345–3371.

[98]

Bouzigues, C.; Gacoin, T.; Alexandrou, A. Biological applications of rare-earth based nanoparticles. ACS Nano 2011, 5, 8488–8505.

[99]

Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.

[100]

Obermeier, B.; Daneman, R.; Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 2013, 19, 1584–1596.

[101]

Rufino-Ramos, D.; Albuquerque, P. R.; Carmona, V.; Perfeito, R.; Nobre, R. J.; Pereira de Almeida, L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J. Control. Release 2017, 262, 247–258.

[102]

Kutchy, N. A.; Ma, R.; Liu, Y. T.; Buch, S.; Hu, G. K. Extracellular vesicle-mediated delivery of ultrasmall superparamagnetic iron oxide nanoparticles to mice brain. Front. Pharmacol. 2022, 13, 819516.

[103]

Ramalho, M. J.; Loureiro, J. A.; Coelho, M. A. N.; Pereira, M. C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma. Pharmaceutics 2022, 14, 279.

[104]

Dong, C. Y.; Huang, Q. X.; Cheng, H.; Zheng, D. W.; Hong, S.; Yan, Y.; Niu, M. T.; Xu, J. G.; Zhang, X. Z. Neisseria meningitidis opca protein/MnO2 hybrid nanoparticles for overcoming the blood-brain barrier to treat glioblastoma. Adv. Mater. 2022, 34, 2109213.

[105]

Huang, N.; Cheng, S.; Zhang, X.; Tian, Q.; Pi, J. L.; Tang, J.; Huang, Q.; Wang, F.; Chen, J.; Xie, Z. et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine 2017, 13, 83–93.

[106]

di Polidoro, A. C.; Cafarchio, A.; Vecchione, D.; Donato, P.; De Nola, F.; Torino, E. Revealing angiopep-2/LRP1 molecular interaction for optimal delivery to glioblastoma (GBM). Molecules 2022, 27, 6696.

[107]

Xie, R. X.; Wu, Z. J.; Zeng, F. X.; Cai, H. W.; Wang, D.; Gu, L.; Zhu, H. Y.; Lui, S.; Guo, G.; Song, B. et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct. Target. Ther. 2021, 6, 309.

[108]

Gao, X. H.; Xu, J. L.; Yao, T. T.; Liu, X. X.; Zhang, H. C.; Zhan, C. Y. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv. Drug Deliv. Rev. 2022, 187, 114362.

[109]

Raja, R.; Rosenberg, G. A.; Caprihan, A. MRI measurements of blood-brain barrier function in dementia: A review of recent studies. Neuropharmacology 2018, 134, 259–271.

[110]

Ware, J. B.; Sinha, S.; Morrison, J.; Walter, A. E.; Gugger, J. J.; Schneider, A. L. C.; Dabrowski, C.; Zamore, H.; Wesley, L.; Magdamo, B. et al. Dynamic contrast enhanced MRI for characterization of blood-brain-barrier dysfunction after traumatic brain injury. Neuroimage Clin. 2022, 36, 103236.

[111]

Nguyen, G. T.; Coulthard, A.; Wong, A.; Sheikh, N.; Henderson, R.; O’Sullivan, J. D.; Reutens, D. C. Measurement of blood-brain barrier permeability in acute ischemic stroke using standard first-pass perfusion CT data. Neuroimage Clin. 2013, 2, 658–662.

[112]

Huang, B.; Tang, T.; Chen, S. H.; Li, H.; Sun, Z. J.; Zhang, Z. L.; Zhang, M. X.; Cui, R. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat. Commun. 2023, 14, 197.

[113]

Yousaf, T.; Dervenoulas, G.; Politis, M. Advances in MRI methodology. Int. Rev. Neurobiol. 2018, 141, 31–76.

[114]

Smits, M. MRI biomarkers in neuro-oncology. Nat. Rev. Neurol. 2021, 17, 486–500.

[115]

Krasnovskaya, O.; Spector, D.; Zlobin, A.; Pavlov, K.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Metals in imaging of Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 9790.

[116]
Pfeiffer, D.; Pfeiffer, F.; Rummeny, E. Advanced X-ray imaging technology. In Molecular Imaging in Oncology. Schober, O.; Kiessling, F.; Debus, J., Eds.; Springer: Cham, 2020; pp 3–30.
[117]

Méndez-Gómez, J. L.; Pelletier, A.; Rougier, M. B.; Korobelnik, J. F.; Schweitzer, C.; Delyfer, M. N.; Catheline, G.; Monfermé, S.; Dartigues, J. F.; Delcourt, C. et al. Association of retinal nerve fiber layer thickness with brain alterations in the visual and limbic networks in elderly adults without dementia. JAMA Netw. Open 2018, 1, e184406.

[118]

Liu, D. D.; Dai, X. L.; Zhang, W.; Zhu, X. Y.; Zha, Z.; Qian, H. S.; Cheng, L.; Wang, X. W. Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials 2023, 292, 121917.

[119]

Liang, S. Y.; Zhou, Q.; Wang, M.; Zhu, Y. H.; Wu, Q. Z.; Yang, X. L. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomedicine 2015, 10, 2325–2333.

[120]
Zhang, X. J.; Guan, Z. PET/CT in the diagnosis and prognosis of osteosarcoma. Front. Biosci. 2018, 23, 2157–2165.
[121]

Gao, Y.; Wu, C. X.; Chen, X. Q.; Ma, L. L.; Zhang, X.; Chen, J. Z.; Liao, X. H.; Liu, M. PET/CT molecular imaging in the era of immune-checkpoint inhibitors therapy. Front. Immunol. 2022, 13, 1049043.

[122]

Brighi, C.; Reid, L.; White, A. L.; Genovesi, L. A.; Kojic, M.; Millar, A.; Bruce, Z.; Day, B. W.; Rose, S.; Whittaker, A. K. et al. MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. Neurooncol. Adv. 2020, 2, vdaa030.

[123]

Jiang, Y. Y.; Pu, K. Y. Molecular fluorescence and photoacoustic imaging in the second near-infrared optical window using organic contrast agents. Adv. Biosyst. 2018, 2, e1700262.

[124]

Li, C. X.; Wang, Y.; Nong, H. Y.; Hu, X. X.; Wu, Y.; Zhang, Y. J.; Liang, C. M.; Chen, K. G.; Li, S. L. Manganese and dysprosium codoped carbon quantum dots as a potential fluorescent/T1/T2/CT quadri-modal imaging nanoprobe. Nanotechnology 2021, 33, 025101.

[125]

Wang, Z. M.; Chen, L. N.; Huang, C. S.; Huang, Y. K.; Jia, N. Q. Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging. J. Mater. Chem. B 2017, 5, 3498–3510.

[126]

Gröhl, J.; Schellenberg, M.; Dreher, K.; Maier-Hein, L. Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics 2021, 22, 100241.

[127]

Guo, B.; Sheng, Z. H.; Hu, D. H.; Liu, C. B.; Zheng, H. R.; Liu, B. Through scalp and skull NIR-II photothermal therapy of deep orthotopic brain tumors with precise photoacoustic imaging guidance. Adv. Mater. 2018, 30, 1802591.

[128]

Yuan, K. S.; Jurado-Sánchez, B.; Escarpa, A. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: A review. J. Nanobiotechnology 2022, 20, 537.

[129]

Chen, J.; Sheng, Z. H.; Li, P. H.; Wu, M. X.; Zhang, N. S.; Yu, X. F.; Wang, Y. W.; Hu, D. H.; Zheng, H. R.; Wang, G. P. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale 2017, 9, 11888–11901.

[130]

Khlebtsov, B.; Burov, A.; Pylaev, T.; Savkina, A.; Prikhozhdenko, E.; Bratashov, D.; Khlebtsov, N. Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing. J. Biophotonics 2022, 15, e202100281.

[131]

Pang, Y. F.; Wang, C. G.; Lu, L. C.; Wang, C. W.; Sun, Z. W.; Xiao, R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 2019, 130, 204–213.

[132]

Bai, X. R.; Wang, L. H.; Ren, J. Q.; Bai, X. W.; Zeng, L. W.; Shen, A. G.; Hu, J. M. Accurate clinical diagnosis of liver cancer based on simultaneous detection of ternary specific antigens by magnetic induced mixing surface-enhanced Raman scattering emissions. Anal. Chem. 2019, 91, 2955–2963.

[133]

Yang, Z. Z.; Du, Y. T.; Sun, Q.; Peng, Y. W.; Wang, R. D.; Zhou, Y.; Wang, Y. Q.; Zhang, C. L.; Qi, X. R. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano 2020, 14, 6191–6212.

[134]

Gao, D. Y.; Li, Y. X.; Wu, Y. Y.; Liu, Y.; Hu, D. H.; Liang, S. M.; Liao, J. L.; Pan, M.; Zhang, P. F.; Li, K. et al. Albumin-consolidated AIEgens for boosting glioma and cerebrovascular NIR-II fluorescence imaging. ACS Appl. Mater. Interfaces 2023, 15, 3–13.

[135]

Zhang, J.; Han, L. L.; Wu, H. G.; Zhong, Y.; Shangguan, P.; Liu, Y. S.; He, M.; Sun, H.; Song, C. H.; Wang, X. et al. A brain-targeting NIR-II ferroptosis system: Effective visualization and oncotherapy for orthotopic glioblastoma. Adv. Sci. 2023, 10, 2206333.

[136]

Li, Y.; Gao, J. F.; Wang, S. P.; Du, M. X.; Hou, X. W.; Tian, T.; Qiao, X.; Tian, Z. Q.; Stang, P. J.; Li, S. J. et al. Self-assembled NIR-II fluorophores with ultralong blood circulation for cancer imaging and image-guided surgery. J. Med. Chem. 2022, 65, 2078–2090.

[137]

Na, S.; Russin, J. J.; Lin, L.; Yuan, X. Y.; Hu, P.; Jann, K. B.; Yan, L. R.; Maslov, K.; Shi, J. H.; Wang, D. J. et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng. 2022, 6, 584–592.

[138]

Fu, Q. R.; Zhu, R.; Song, J. B.; Yang, H. H.; Chen, X. Y. Photoacoustic imaging: Contrast agents and their biomedical applications. Adv. Mater. 2019, 31, 1805875.

[139]

Xia, J. Z.; Feng, G.; Xia, X. R.; Hao, L.; Wang, Z. G. NH4HCO3 gas-generating liposomal nanoparticle for photoacoustic imaging in breast cancer. Int. J. Nanomedicine 2017, 12, 1803–1813.

[140]

Spedalieri, C.; Kneipp, J. Surface enhanced Raman scattering for probing cellular biochemistry. Nanoscale 2022, 14, 5314–5328.

[141]

Andreiuk, B.; Nicolson, F.; Clark, L. M.; Panikkanvalappil, S. R.; Kenry; Rashidian, M.; Harmsen, S.; Kircher, M. F. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022, 6, 10–30.

[142]

Wang, J.; Ni, D. L.; Bu, W. B.; Zhou, Q.; Fan, W. P.; Wu, Y.; Liu, Y. Y.; Yin, L. K.; Cui, Z. W.; Zhang, X. X. et al. BaHoF5 nanoprobes as high-performance contrast agents for multi-modal CT imaging of ischemic stroke. Biomaterials 2015, 71, 110–118.

[143]

Bloom, G. S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508.

[144]

Busche, M. A.; Hyman, B. T. Synergy between amyloid-β and Tau in Alzheimer’s disease. Nat. Neurosci. 2020, 23, 1183–1193.

[145]

Cisternas, P.; Taylor, X.; Lasagna-Reeves, C. A. The amyloid-tau-neuroinflammation axis in the context of cerebral amyloid angiopathy. Int. J. Mol. Sci. 2019, 20, 6319.

[146]

Rai, H.; Gupta, S.; Kumar, S.; Yang, J.; Singh, S. K.; Ran, C. Z.; Modi, G. Near-infrared fluorescent probes as imaging and theranostic modalities for amyloid-beta and tau aggregates in Alzheimer’s disease. J. Med. Chem. 2022, 65, 8550–8595.

[147]

Zhou, J.; Jangili, P.; Son, S.; Ji, M. S.; Won, M.; Kim, J. S. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 2020, 32, 2001945.

[148]

Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022, 21, 726–734.

[149]

Villemagne, V. L.; Doré, V.; Burnham, S. C.; Masters, C. L.; Rowe, C. C. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat. Rev. Neurol. 2018, 14, 225–236.

[150]

Duan, P.; Chen, K. J.; Wijegunawardena, G.; Dregni, A. J.; Wang, H. K.; Wu, H. F.; Hong, M. Binding sites of a positron emission tomography imaging agent in Alzheimer’s β-amyloid fibrils studied using 19F solid-state NMR. J. Am. Chem. Soc. 2022, 144, 1416–1430.

[151]

Miao, J. J.; Wang, L.; Zhu, M. Y.; Xiao, W. W.; Wu, H. J.; Di, M. P.; Huang, Y. Q.; Huang, S. M.; Han, F.; Deng, X. W. et al. Corrigendum to “long-term survival and late toxicities of elderly nasopharyngeal carcinoma (NPC) patients treated by high-total- and fractionated-dose simultaneous modulated accelerated radiotherapy with or without chemotherapy” [Oral Oncol. 89 (2019) 40-47]. Oral Oncol. 2019, 90, 136.

[152]

Surmeier, D. J.; Obeso, J. A.; Halliday, G. M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 101–113.

[153]

Liu, J. Y.; Liu, C.; Zhang, J. F.; Zhang, Y. M.; Liu, K. Y.; Song, J. X.; Sreenivasmurthy, S. G.; Wang, Z. Y.; Shi, Y. S.; Chu, C. C. et al. A self-assembled α-synuclein nanoscavenger for Parkinson’s disease. ACS Nano 2020, 14, 1533–1549.

[154]

Gao, L. Q.; Wang, W.; Wang, X.; Yang, F.; Xie, L. X.; Shen, J.; Brimble, M. A.; Xiao, Q. C.; Yao, S. Q. Fluorescent probes for bioimaging of potential biomarkers in Parkinson’s disease. Chem. Soc. Rev. 2021, 50, 1219–1250.

[155]

Wang, P. Z.; Yu, L.; Gong, J. K.; Xiong, J. H.; Zi, S.; Xie, H.; Zhang, F.; Mao, Z. Q.; Liu, Z. H.; Kim, J. S. An activity-based fluorescent probe for imaging fluctuations of peroxynitrite (ONOO) in the Alzheimer’s disease brain. Angew. Chem., Int. Ed. 2022, 61, e202206894.

[156]

An, R. B.; Liu, L. J.; Wei, S. X.; Huang, Z.; Qiu, L.; Lin, J. G.; Liu, H.; Ye, D. J. Controlling disassembly of paramagnetic prodrug and photosensitizer nanoassemblies for on-demand orthotopic glioma theranostics. ACS Nano 2022, 16, 20607–20621.

[157]

Andersen, B. M.; Faust Akl, C.; Wheeler, M. A.; Chiocca, E. A.; Reardon, D. A.; Quintana, F. J. Glial and myeloid heterogeneity in the brain tumour microenvironment. Nat. Rev. Cancer 2021, 21, 786–802.

[158]

Crivii, C. B.; Boșca, A. B.; Melincovici, C. S.; Constantin, A. M.; Mărginean, M.; Dronca, E.; Suflețel, R.; Gonciar, D.; Bungărdean, M.; Sovrea, A. Glioblastoma microenvironment and cellular interactions. Cancers 2022, 14, 1092.

[159]

Martha, S. R.; Fraser, J. F.; Pennypacker, K. R. Acid-base and electrolyte changes drive early pathology in ischemic stroke. Neuromolecular Med. 2019, 21, 540–545.

[160]

Cheung, E. C.; Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297.

[161]

Huang, G. N.; Zang, J. K.; He, L. Z.; Zhu, H. L.; Huang, J. R.; Yuan, Z. W.; Chen, T. F.; Xu, A. D. Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke. ACS Nano 2022, 16, 431–452.

[162]

Moulton, M. J.; Barish, S.; Ralhan, I.; Chang, J. L.; Goodman, L. D.; Harland, J. G.; Marcogliese, P. C.; Johansson, J. O.; Ioannou, M. S.; Bellen, H. J. Neuronal ROS-induced glial lipid droplet formation is altered by loss of Alzheimer’s disease-associated genes. Proc. Natl. Acad. Sci. USA 2021, 118, e2112095118.

[163]

Zhou, Y.; Wang, L.; Wang, C. J.; Wu, Y. L.; Chen, D. M.; Lee, T. H. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch. Pharm. Res. 2020, 43, 187–203.

[164]

Amantea, D.; Marrone, M. C.; Nisticò, R.; Federici, M.; Bagetta, G.; Bernardi, G.; Mercuri, N. B. Oxidative stress in stroke pathophysiology validation of hydrogen peroxide metabolism as a pharmacological target to afford neuroprotection. Int. Rev. Neurobiol. 2009, 85, 363–374.

[165]

Wu, Z.; Liu, M. M.; Liu, Z. C.; Tian, Y. Real-time imaging and simultaneous quantification of mitochondrial H2O2 and ATP in neurons with a single two-photon fluorescence-lifetime-based probe. J. Am. Chem. Soc. 2020, 142, 7532–7541.

[166]

Wang, X.; Li, P.; Ding, Q.; Wu, C. C.; Zhang, W.; Tang, B. Corrigendum: Illuminating the function of the hydroxyl radical in the brains of mice with depression phenotypes by two-photon fluorescence imaging. Angew. Chem., Int. Ed. 2022, 61, e202200503.

[167]

Lu, S. C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830, 3143–3153.

[168]

Venkateshappa, C.; Harish, G.; Mahadevan, A.; Srinivas Bharath, M. M.; Shankar, S. K. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: Implications for neurodegeneration in Alzheimer’s disease. Neurochem. Res. 2012, 37, 1601–1614.

[169]

Aoyama, K. Glutathione in the brain. Int. J. Mol. Sci. 2021, 22, 5010.

[170]

von Mässenhausen, A.; Zamora Gonzalez, N.; Maremonti, F.; Belavgeni, A.; Tonnus, W.; Meyer, C.; Beer, K.; Hannani, M. T.; Lau, A.; Peitzsch, M. et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor-induced dipeptidase-1 expression and glutathione depletion. Sci. Adv. 2022, 8, eabl8920.

[171]

Bansal, A.; Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell. Biol. 2018, 217, 2291–2298.

[172]

Shi, J. L.; Zuo, H.; Ni, L. C.; Xia, L.; Zhao, L. X.; Gong, M. J.; Nie, D. K.; Gong, P. P.; Cui, D. M.; Shi, W. et al. An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation. Neurol. Sci. 2014, 35, 839–845.

[173]

Miao, Y. B.; Chen, K. H.; Chen, C. T.; Mi, F. L.; Lin, Y. J.; Chang, Y.; Chiang, C. S.; Wang, J. T.; Lin, K. J.; Sung, H. W. A noninvasive gut-to-brain oral drug delivery system for treating brain tumors. Adv. Mater. 2021, 33, 2100701.

[174]

Zou, Y.; Sun, X. H.; Wang, Y. B.; Yan, C. N.; Liu, Y. J.; Li, J.; Zhang, D. Y.; Zheng, M.; Chung, R. S.; Shi, B. Y. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 2020, 32, 2000416.

[175]

Cisneros-Mejorado, A.; Pérez-Samartín, A.; Gottlieb, M.; Matute, C. ATP signaling in brain: Release, excitotoxicity and potential therapeutic targets. Cell. Mol. Neurobiol. 2015, 35, 1–6.

[176]

Rajendran, M.; Dane, E.; Conley, J.; Tantama, M. Imaging adenosine triphosphate (ATP). Biol. Bull. 2016, 231, 73–84.

[177]

Butterfield, D. A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160.

[178]

Di Virgilio, F.; Sarti, A. C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018, 18, 601–618.

[179]

Gu, B. J.; Wiley, J. S. Rapid ATP-induced release of matrix metalloproteinase 9 is mediated by the P2X7 receptor. Blood 2006, 107, 4946–4953.

[180]

Zheng, J. Y.; Li, X. X.; Wang, K.; Song, J. J.; Qi, H. L. Electrochemical nanoaptasensor for continuous monitoring of ATP fluctuation at subcellular level. Anal. Chem. 2020, 92, 10940–10945.

[181]

Wang, W.; Li, X.; Tang, K.; Song, Z. L.; Luo, X. L. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. J. Mater. Chem. B 2020, 8, 5945–5951.

[182]

Liu, M.; Walter, G. A.; Pathare, N. C.; Forster, R. E.; Vandenborne, K. A quantitative study of bioenergetics in skeletal muscle lacking carbonic anhydrase III using 31P magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 2007, 104, 371–376.

[183]

Sun, P. P.; Chen, H. C.; Lu, S. Y.; Hai, J.; Guo, W. T.; Jing, Y. H.; Wang, B. D. Simultaneous sensing of H2S and ATP with a two-photon fluorescent probe in Alzheimer’s disease: Toward understanding why H2S regulates glutamate-induced ATP dysregulation. Anal. Chem. 2022, 94, 11573–11581.

[184]

Cheng, Y.; Cheng, A. R.; Jia, Y. L.; Yang, L.; Ning, Y.; Xu, L.; Zhong, Y. Z.; Zhuang, Z. R.; Guan, J. T.; Zhang, X. L. et al. pH-responsive multifunctional theranostic rapamycin-loaded nanoparticles for imaging and treatment of acute ischemic stroke. ACS Appl. Mater. Interfaces 2021, 13, 56909–56922.

[185]

Fang, H. X.; Zhang, H.; Li, L.; Ni, Y.; Shi, R. R.; Li, Z.; Yang, X. K.; Ma, B.; Zhang, C. W.; Wu, Q. et al. Rational design of a two-photon fluorogenic probe for visualizing monoamine oxidase A activity in human glioma tissues. Angew. Chem., Int. Ed. 2020, 59, 7536–7541.

[186]

Li, N.; Zhang, W. F.; Khan, M.; Lin, L.; Lin, J. M. MoS2-LA-PEI nanocomposite carrier for real-time imaging of ATP metabolism in glioma stem cells co-cultured with endothelial cells on a microfluidic system. Biosens. Bioelectron. 2018, 99, 142–149.

[187]

Peter, S. B.; Nandhan, V. R. 31-Phosphorus magnetic resonance spectroscopy in evaluation of glioma and metastases in 3T MRI. Indian J. Radiol. Imaging 2021, 31, 873–881.

[188]

Yan, J. W.; Li, A. Q.; Chen, X. L.; Cao, K. X.; Song, M. C.; Guo, S.; Li, Z.; Huang, S. Q.; Li, Z. L.; Xu, D. H. et al. Glycolysis inhibition ameliorates brain injury after ischemic stroke by promoting the function of myeloid-derived suppressor cells. Pharmacol. Res. 2022, 179, 106208.

[189]

McVicar, N.; Li, A. X.; Gonçalves, D. F.; Bellyou, M.; Meakin, S. O.; Prado, M. A.; Bartha, R. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J. Cereb. Blood Flow Metab. 2014, 34, 690–698.

[190]

Zhang, Z. X.; Li, X.; Yang, F.; Chen, C.; Liu, P.; Ren, Y.; Sun, P. K.; Wang, Z. X.; You, Y. P.; Zeng, Y. X. et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat. Commun. 2021, 12, 5872.

[191]

Wang, Q.; Zhang, C.; Zhu, J. L.; Zhang, L.; Chen, H. R.; Qian, J.; Luo, C. Crucial role of RLIP76 in promoting glycolysis and tumorigenesis by stabilization of HIF-1α in glioma cells under hypoxia. Mol. Neurobiol. 2022, 59, 6724–6739.

[192]

Su, R.; Dong, L.; Li, C. Y.; Nachtergaele, S.; Wunderlich, M.; Qing, Y.; Deng, X. L.; Wang, Y. G.; Weng, X. C.; Hu, C. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 2018, 172, 90–105.e23.

[193]

Duan, W. J.; Yue, Q.; Liu, Y.; Zhang, Y. F.; Guo, Q. H.; Wang, C.; Yin, S. J.; Fan, D. D.; Xu, W. J. et al. A pH ratiometrically responsive surface enhanced resonance Raman scattering probe for tumor acidic margin delineation and image-guided surgery. Chem. Sci. 2020, 11, 4397–4402.

[194]

Lu, H. W.; Chen, A.; Zhang, X. D.; Wei, Z. X.; Cao, R.; Zhu, Y.; Lu, J. X.; Wang, Z. L.; Tian, L. L. A pH-responsive T1-T2 dual-modal MRI contrast agent for cancer imaging. Nat. Commun. 2022, 13, 7948.

[195]

Jones, D. N.; Raghanti, M. A. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J. Chem. Neuroanat. 2021, 114, 101957.

[196]

Youdim, M. B. H.; Edmondson, D.; Tipton, K. F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 2006, 7, 295–309.

[197]

Naoi, M.; Maruyama, W.; Inaba-Hasegawa, K. Type A and B monoamine oxidase in age-related neurodegenerative disorders: Their distinct roles in neuronal death and survival. Curr. Top. Med. Chem. 2012, 12, 2177–2188.

[198]

Wang, Y. C.; Wang, X.; Yu, J. J.; Ma, F. Y.; Li, Z.; Zhou, Y.; Zeng, S.; Ma, X. Y.; Li, Y. R.; Neal, A. et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat. Commun. 2021, 12, 3530.

[199]

Libert, S.; Pointer, K.; Bell, E. L.; Das, A.; Cohen, D. E.; Asara, J. M.; Kapur, K.; Bergmann, S.; Preisig, M.; Otowa, T. et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 2011, 147, 1459–1472.

[200]

Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: From neurotransmitter imbalance to impaired neurogenesis. J. Neural. Transm. 2018, 125, 53–66.

[201]

Chun, H.; Lim, J.; Park, K. D.; Lee, C. J. Inhibition of monoamine oxidase B prevents reactive astrogliosis and scar formation in stab wound injury model. Glia 2022, 70, 354–367.

[202]

Davis, N.; Mota, B. C.; Stead, L.; Palmer, E. O. C.; Lombardero, L.; Rodríguez-Puertas, R.; de Paola, V.; Barnes, S. J.; Sastre, M. Pharmacological ablation of astrocytes reduces Aβ degradation and synaptic connectivity in an ex vivo model of Alzheimer’s disease. J. Neuroinflammation 2021, 18, 73.

[203]

Tan, Y. Y.; Jenner, P.; Chen, S. D. Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022, 12, 477–493.

[204]

Kim, D.; Baik, S. H.; Kang, S.; Cho, S. W.; Bae, J.; Cha, M. Y.; Sailor, M. J.; Mook-Jung, I.; Ahn, K. H. Close correlation of monoamine oxidase activity with progress of Alzheimer’s disease in mice, observed by in vivo two-photon imaging. ACS Cent. Sci. 2016, 2, 967–975.

[205]

Li, L.; Zhang, C. W.; Ge, J. Y.; Qian, L. H.; Chai, B. H.; Zhu, Q.; Lee, J. S.; Lim, K. L.; Yao, S. Q. A small-molecule probe for selective profiling and imaging of monoamine oxidase B activities in models of Parkinson’s disease. Angew. Chem., Int. Ed. 2015, 54, 10821–10825.

[206]

Chan, Z. C. K.; Oentaryo, M. J.; Lee, C. W. MMP-mediated modulation of ECM environment during axonal growth and NMJ development. Neurosci. Lett. 2020, 724, 134822.

[207]

Knapinska, A. M.; Fields, G. B. The expanding role of MT1-MMP in cancer progression. Pharmaceuticals 2019, 12, 77.

[208]

Wozniak, J.; Floege, J.; Ostendorf, T.; Ludwig, A. Key metalloproteinase-mediated pathways in the kidney. Nat. Rev. Nephrol. 2021, 17, 513–527.

[209]

Reinhard, S. M.; Razak, K.; Ethell, I. M. A delicate balance: Role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Front. Cell. Neurosci. 2015, 9, 280.

[210]

Walz, W.; Cayabyab, F. S. Neutrophil infiltration and matrix metalloproteinase-9 in lacunar infarction. Neurochem. Res. 2017, 42, 2560–2565.

[211]

Zheng, X. W.; Zhong, C. K.; Zhu, Z. B.; Zhang, K. X.; Peng, H.; Xu, T.; Bu, X. Q.; Che, B. Z.; Xu, T.; Wang, A. L. et al. Association between serum matrix metalloproteinase-9 and poor prognosis in acute ischemic stroke patients: The role of dyslipidemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 209–215.

[212]

Rosell, A.; Cuadrado, E.; Ortega-Aznar, A.; Hernandez-Guillamon, M.; Lo, E. H.; Montaner, J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 2008, 39, 1121–1126.

[213]

Huang, Y. M.; Zhang, B. L.; Haneke, H.; Haage, V.; Lubas, M.; Yuan, Y.; Xia, P. F.; Motta, E.; Nanvuma, C.; Dzaye, O. et al. Glial cell line-derived neurotrophic factor increases matrix metallopeptidase 9 and 14 expression in microglia and promotes microglia-mediated glioma progression. J. Neurosci. Res. 2021, 99, 1048–1063.

[214]

Ruan, Z. Z.; Zhang, D. D.; Huang, R. X.; Sun, W.; Hou, L. Y.; Zhao, J.; Wang, Q. S. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson’s disease mouse model. Int. J. Mol. Sci. 2022, 23, 2793.

[215]

Rui, X.; Ma, S. X. A retrospective study of probiotics for the treatment of children with antibiotic-associated diarrhea. Medicine 2020, 99, e20631.

[216]

Wang, Y. P.; Lin, T. T.; Zhang, W. Y.; Jiang, Y. F.; Jin, H. Y.; He, H. N.; Yang, V. C.; Chen, Y.; Huang, Y. Z. A prodrug-type, MMP-2-targeting nanoprobe for tumor detection and imaging. Theranostics 2015, 5, 787–795.

[217]

Cai, Y.; Leng, S.; Ma, Y. Y.; Xu, T. T.; Chang, D.; Ju, S. H. Dynamic change of MMP-9 in diabetic stroke visualized by optical imaging and treated with CD28 superagonist. Biomater. Sci. 2021, 9, 2562–2570.

[218]

Cárcel-Márquez, J.; Cullell, N.; Muiño, E.; Gallego-Fabrega, C.; Lledós, M.; Ibañez, L.; Krupinski, J.; Montaner, J.; Cruchaga, C.; Lee, J. M. et al. Causal effect of MMP-1 (matrix metalloproteinase-1), MMP-8, and MMP-12 levels on ischemic stroke: A mendelian randomization study. Stroke 2021, 52, e316–e320.

[219]

Chelluboina, B.; Nalamolu, K. R.; Klopfenstein, J. D.; Pinson, D. M.; Wang, D. Z.; Vemuganti, R.; Veeravalli, K. K. MMP-12, a promising therapeutic target for neurological diseases. Mol. Neurobiol. 2018, 55, 1405–1409.

[220]

Larochelle, J.; Yang, C. J.; Liu, L.; Candelario-Jalil, E. An unexplored role for MMP-7 (matrix metalloproteinase-7) in promoting gut permeability after ischemic stroke. Stroke 2022, 53, 3238–3242.

[221]

Hu, X.; Hai, Z. J.; Wu, C. F.; Zhan, W. J.; Liang, G. L. A Golgi-targeting and dual-color “turn-on” probe for spatially precise imaging of furin. Anal. Chem. 2021, 93, 1636–1642.

[222]

Wang, C. C.; Du, W.; Wu, C. F.; Dan, S.; Sun, M.; Zhang, T.; Wang, B.; Yuan, Y.; Liang, G. L. Cathespin B-initiated cypate nanoparticle formation for tumor photoacoustic imaging. Angew. Chem., Int. Ed. 2022, 61, e202114766.

[223]

Wang, S.; Shen, H. L.; Mao, Q. L.; Tao, Q.; Yuan, G. T.; Zeng, L. L.; Chen, Z. Y.; Zhang, Y. J.; Cheng, L.; Zhang, J. Z. et al. Macrophage-mediated porous magnetic nanoparticles for multimodal imaging and postoperative photothermal therapy of gliomas. ACS Appl. Mater. Interfaces 2021, 13, 56825–56837.

[224]

Dallet, L.; Stanicki, D.; Voisin, P.; Miraux, S.; Ribot, E. J. Micron-sized iron oxide particles for both MRI cell tracking and magnetic fluid hyperthermia treatment. Sci. Rep. 2021, 11, 3286.

[225]

Tan, J.; Zhou, X. Y.; Zhang, S. Y. Iron-doped cross-linked lipoic acid nano-aggregates for ferroptosis-mediated cancer treatment. Acta Biomater. 2023, 159, 289–299.

[226]

Xu, Y. Z.; Liu, S. Y.; Zeng, L. L.; Ma, H. S.; Zhang, Y. F.; Yang, H. H.; Liu, Y. C.; Fang, S.; Zhao, J.; Xu, Y. S. et al. An enzyme-engineered nonporous copper(I) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy. Adv. Mater. 2022, 34, 2204733.

[227]

Wu, M.; Liu, X. G.; Chen, H.; Duan, Y. K.; Liu, J. J.; Pan, Y. T.; Liu, B. Activation of pyroptosis by membrane-anchoring AIE photosensitizer design: New prospect for photodynamic cancer cell ablation. Angew. Chem., Int. Ed. 2021, 60, 9093–9098.

[228]

Chen, Y.; Gao, Y. J.; Chen, Y.; Liu, L.; Mo, A. C.; Peng, Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J. Control. Release 2020, 328, 251–262.

[229]

Zhi, D. F.; Yang, T.; O’Hagan, J.; Zhang, S. B.; Donnelly, R. F. Photothermal therapy. J. Control. Release 2020, 325, 52–71.

[230]

Broadwater, D.; Medeiros, H. C. D.; Lunt, R. R.; Lunt, S. Y. Current advances in photoactive agents for cancer imaging and therapy. Annu. Rev. Biomed. Eng. 2021, 23, 29–60.

[231]

Terrazzano, G.; Rubino, V.; Damiano, S.; Sasso, A.; Petrozziello, T.; Ucci, V.; Palatucci, A. T.; Giovazzino, A.; Santillo, M.; De Felice, B. et al. T cell activation induces CuZn superoxide dismutase (SOD)-1 intracellular re-localization, production and secretion. Biochim. Biophys. Acta 2014, 1843, 265–274.

[232]

Xu, J. J.; Yu, S.; Wang, X. D.; Qian, Y. Y.; Wu, W. S.; Zhang, S. H.; Zheng, B. B.; Wei, G. G.; Gao, S.; Cao, Z. L. et al. High affinity of chlorin e6 to immunoglobulin G for intraoperative fluorescence image-guided cancer photodynamic and checkpoint blockade therapy. ACS Nano 2019, 13, 10242–10260.

[233]

Lv, Z. J.; Jin, L. H.; Gao, W. H.; Cao, Y.; Zhang, H.; Xue, D. Z.; Yin, N.; Zhang, T. Q.; Wang, Y. H.; Zhang, H. J. Novel YOF-based theranostic agents with a cascade effect for NIR-II fluorescence imaging and synergistic starvation/photodynamic therapy of orthotopic gliomas. ACS Appl. Mater. Interfaces 2022, 14, 30523–30532.

[234]

Huang, R. Y.; Li, G. Z.; Wang, Z. L.; Hu, H. M.; Zeng, F.; Zhang, K. N.; Wang, K.; Wu, F. Identification of an ATP metabolism-related signature associated with prognosis and immune microenvironment in gliomas. Cancer Sci. 2020, 111, 2325–2335.

[235]

Qian, J. W.; Wang, C.; Wang, B.; Yang, J.; Wang, Y. D.; Luo, F. F.; Xu, J. Y.; Zhao, C. J.; Liu, R. H.; Chu, Y. W. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: Hints for glioma anti-PD-1/PD-L1 therapy. J. Neuroinflammation 2018, 15, 290.

[236]

Genoud, V.; Marinari, E.; Nikolaev, S. I.; Castle, J. C.; Bukur, V.; Dietrich, P. Y.; Okada, H.; Walker, P. R. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 2018, 7, e1501137.

[237]

Zhang, J.; Chen, C.; Li, A. N.; Jing, W. Q.; Sun, P.; Huang, X. Y.; Liu, Y. C.; Zhang, S. C.; Du, W.; Zhang, R. et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 2021, 16, 538–548.

[238]

Park, J. H.; Kim, H. J.; Kim, C. W.; Kim, H. C.; Jung, Y.; Lee, H. S.; Lee, Y.; Ju, Y. S.; Oh, J. E.; Park, S. H. et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat. Immunol. 2021, 22, 336–346.

[239]

Li, F.; Lv, B. K.; Liu, Y.; Hua, T.; Han, J. B.; Sun, C. M.; Xu, L. M.; Zhang, Z. F.; Feng, Z. M.; Cai, Y. Q. et al. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 2018, 7, e1391973.

[240]

Macrez, R.; Ali, C.; Toutirais, O.; Le Mauff, B.; Defer, G.; Dirnagl, U.; Vivien, D. Stroke and the immune system: From pathophysiology to new therapeutic strategies. Lancet Neurol. 2011, 10, 471–480.

[241]

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

[242]

Liu, Y.; Chongsathidkiet, P.; Crawford, B. M.; Odion, R.; Dechant, C. A.; Kemeny, H. R.; Cui, X. Y.; Maccarini, P. F.; Lascola, C. D.; Fecci, P. E. et al. Plasmonic gold nanostar-mediated photothermal immunotherapy for brain tumor ablation and immunologic memory. Immunotherapy 2019, 11, 1293–1302.

[243]

Yu, M.; Duan, X. H.; Cai, Y. J.; Zhang, F.; Jiang, S. Q.; Han, S. S.; Shen, J.; Shuai, X. T. Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 2019, 6, 1900037.

[244]
Liang, F. M.; Zhu, L.; Wang, C.; Yang, Y. L.; He, Z. H. BSA-MnO2-SAL multifunctional nanoparticle-mediated M1 macrophages polarization for glioblastoma therapy. RSC Adv. 2021, 11, 35331–35341.
[245]

Abe, C.; Miyazawa, T.; Miyazawa, T. Current use of Fenton reaction in drugs and food. Molecules 2022, 27, 5451.

[246]

Zhang, Y. L.; Fu, X.; Jia, J. S.; Wikerholmen, T.; Xi, K. Y.; Kong, Y.; Wang, J. P.; Chen, H. J.; Ma, Y.; Li, Z. W. et al. Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 43408–43421.

[247]

Wang, X.; Hu, A. D.; Du, K.; Feng, F. D. Biomimetic polymer-templated copper nanoparticles stabilize a temozolomide intermediate for chemotherapy against glioblastoma multiforme. ACS Appl. Bio Mater. 2021, 4, 8004–8012.

[248]

Tang, Z. M.; Zhao, P. R.; Wang, H.; Liu, Y. Y.; Bu, W. B. Biomedicine meets Fenton chemistry. Chem. Rev. 2021, 121, 1981–2019.

[249]

Li, C. Y.; Wan, Y. L.; Zhang, Y. F.; Fu, L. H.; Blum, N. T.; Cui, R.; Wu, B. D.; Zheng, R.; Lin, J.; Li, Z. M. et al. In situ sprayed starvation/chemodynamic therapeutic gel for post-surgical treatment of IDH1 (R132H) glioma. Adv. Mater. 2022, 34, 2103980.

[250]

Chan, M. H.; Li, C. H.; Chang, Y. C.; Hsiao, M. Iron-based ceramic composite nanomaterials for magnetic fluid hyperthermia and drug delivery. Pharmaceutics 2022, 14, 2584.

[251]

Chandrasekharan, P.; Tay, Z. W.; Hensley, D.; Zhou, X. Y.; Fung, B. K.; Colson, C.; Lu, Y.; Fellows, B. D.; Huynh, Q.; Saayujya, C. et al. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: Tracers, hardware, and future medical applications. Theranostics 2020, 10, 2965–2981.

[252]

Zhao, L. Y.; Zheng, Y. J.; Yan, H.; Xie, W. S.; Sun, X. D.; Li, N.; Tang, J. T. 2-Deoxy-D-Glucose modified magnetic nanoparticles with dual functional properties: Nanothermotherapy and magnetic resonance imaging. J. Nanosci. Nanotechnol. 2016, 16, 2401–2407.

[253]

Zhang, H. M.; Lu, H. Q.; Xiang, L. S.; Bullen, J. W.; Zhang, C. Z.; Samanta, D.; Gilkes, D. M.; He, J. J.; Semenza, G. L. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc. Natl. Acad. Sci. USA 2015, 112, E6215–E6223.

[254]

Ding, X. C.; Wang, L. L.; Zhang, X. D.; Xu, J. L.; Li, P. F.; Liang, H.; Zhang, X. B.; Xie, L.; Zhou, Z. H.; Yang, J. et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J. Hematol. Oncol. 2021, 14, 92.

[255]

Boyd, N. H.; Tran, A. N.; Bernstock, J. D.; Etminan, T.; Jones, A. B.; Gillespie, G. Y.; Friedman, G. K.; Hjelmeland, A. B. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 2021, 11, 665–683.

[256]

Ren, P.; Wang, J. Y.; Zeng, Z. R.; Li, N. X.; Chen, H. L.; Peng, X. G.; Bhawal, U. K.; Guo, W. Z. A novel hypoxia-driven gene signature that can predict the prognosis and drug resistance of gliomas. Front. Genet. 2022, 13, 976356.

[257]

Kaur, B.; Khwaja, F. W.; Severson, E. A.; Matheny, S. L.; Brat, D. J.; Van Meir, E. G. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro. Oncol. 2005, 7, 134–153.

[258]

Fu, C. P.; Duan, X. H.; Cao, M. H.; Jiang, S. Q.; Ban, X. H.; Guo, N.; Zhang, F.; Mao, J. J.; Huyan, T.; Shen, J. et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv. Healthc. Mater. 2019, 8, 1900047.

[259]

Jiang, Q.; Geng, X. K.; Warren, J.; Eugene Paul Cosky, E.; Kaura, S.; Stone, C.; Li, F. W.; Ding, Y. C. Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following ischemic stroke. Neuroscience 2020, 448, 126–139.

[260]

Tsao, C. C.; Baumann, J.; Huang, S. F.; Kindler, D.; Schroeter, A.; Kachappilly, N.; Gassmann, M.; Rudin, M.; Ogunshola, O. O. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 2021, 24, 823–842.

[261]

Higashida, T.; Peng, C. Y.; Li, J.; Dornbos III, D.; Teng, K. L.; Li, X. H.; Kinni, H.; Guthikonda, M.; Ding, Y. C. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr. Neurovasc. Res. 2011, 8, 44–51.

[262]

Chen, W. Y.; Chang, M. S. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J. Immunol. 2009, 182, 5003–5012.

[263]

Jakubauskienė, E.; Vilys, L.; Pečiulienė, I.; Kanopka, A. The role of hypoxia on Alzheimer’s disease-related APP and Tau mRNA formation. Gene 2021, 766, 145146.

[264]

Sun, X. L.; He, G. Q.; Qing, H.; Zhou, W. H.; Dobie, F.; Cai, F.; Staufenbiel, M.; Huang, L. E.; Song, W. H. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. USA 2006, 103, 18727–18732.

[265]

Zhang, F.; Zhong, R. J.; Li, S.; Fu, Z. F.; Cheng, C.; Cai, H. B.; Le, W. D. Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Front. Aging Neurosci. 2017, 9, 282.

[266]

Guo, M. Y.; Ji, X. M.; Liu, J. Hypoxia and alpha-synuclein: Inextricable link underlying the pathologic progression of Parkinson’s disease. Front. Aging Neurosci. 2022, 14, 919343.

[267]

Wu, X.; Gong, L. J.; Xie, L.; Gu, W. Y.; Wang, X. Y.; Liu, Z. L.; Li, S. Q. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-parkin pathway of mitophagy in a murine model of sleep apnea. Front. Immunol. 2021, 12, 628168.

[268]

Al-Obaidi, M. M. J.; Desa, M. N. M. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell. Mol. Neurobiol. 2018, 38, 1349–1368.

[269]

Yau, B.; Hunt, N. H.; Mitchell, A. J.; Too, L. K. Blood-brain barrier pathology and CNS outcomes in Streptococcus pneumoniae meningitis. Int. J. Mol. Sci. 2018, 19, 3555.

[270]

Donovan, J.; Figaji, A.; Imran, D.; Phu, N. H.; Rohlwink, U.; Thwaites, G. E. The neurocritical care of tuberculous meningitis. Lancet Neurol. 2019, 18, 771–783.

[271]

Gerber, J.; Seitz, R. C.; Bunkowski, S.; Brück, W.; Nau, R. Evidence for frequent focal and diffuse acute axonal injury in human bacterial meningitis. Clin. Neuropathol. 2009, 28, 33–39.

[272]

Zhang, X. C.; Zhang, Z. C.; Shu, Q. M.; Xu, C.; Zheng, Q. Q.; Guo, Z.; Wang, Z. X.; Hao, Z. X.; Liu, X.; Wang, G. Q. et al. Copper clusters: An effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo. Adv. Funct. Mater. 2021, 31, 2008720.

[273]

Meng, X. D.; Sun, S. R.; Gong, C. C.; Yang, J. Y.; Yang, Z.; Zhang, X. J.; Dong, H. F. Ag-doped metal-organic frameworks’ heterostructure for sonodynamic therapy of deep-seated cancer and bacterial infection. ACS Nano 2023, 17, 1174–1186.

[274]

Mauro, M.; Crosera, M.; Bovenzi, M.; Adami, G.; Filon, F. L. Pilot study on in vitro silver nanoparticles permeation through meningeal membrane. Colloids Surf. B: Biointerfaces 2016, 146, 245–249.

[275]

Rudi, L.; Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Peshkova, A.; Cepoi, A.; Grozdov, D. Accumulation and effect of silver nanoparticles functionalized with Spirulina platensis on rats. Nanomaterials 2021, 11, 2992.

[276]

Mota, F.; Ruiz-Bedoya, C. A.; Tucker, E. W.; Holt, D. P.; De Jesus, P.; Lodge, M. A.; Erice, C.; Chen, X. Y.; Bahr, M.; Flavahan, K. et al. Dynamic 18F-pretomanid PET imaging in animal models of TB meningitis and human studies. Nat. Commun. 2022, 13, 7974.

[277]

Tian, S.; Bai, H. T.; Li, S. L.; Xiao, Y. F.; Cui, X.; Li, X. Z.; Tan, J. H.; Huang, Z. M.; Shen, D.; Liu, W. M. et al. Water-soluble organic nanoparticles with programable intermolecular charge transfer for NIR-II photothermal anti-bacterial therapy. Angew. Chem., Int. Ed. 2021, 60, 11758–11762.

[278]

Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021, 17, 4266–4285.

[279]

Chen, X.; Kang, R.; Kroemer, G.; Tang, D. L. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021, 18, 280–296.

[280]

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

[281]

Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R. D. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261.

[282]

Yuan, J. X.; Liu, H. H.; Zhang, H.; Wang, T. T.; Zheng, Q.; Li, Z. Controlled activation of TRPV1 channels on microglia to boost their autophagy for clearance of alpha-synuclein and enhance therapy of Parkinson’s disease. Adv. Mater. 2022, 34, 2108435.

[283]

Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021, 6, 128.

[284]

Zheng, P.; Ding, B. B.; Zhu, G. Q.; Li, C. X.; Lin, J. Biodegradable Ca2+ nanomodulators activate pyroptosis through mitochondrial Ca2+ overload for cancer immunotherapy. Angew. Chem., Int. Ed. 2022, 61, e202204904.

[285]

Wang, X. Z.; He, S. S.; Cheng, P. H.; Pu, K. Y. A dual-locked tandem fluorescent probe for imaging of pyroptosis in cancer chemo-immunotherapy. Adv. Mater. 2023, 35, 2206510.

[286]

Liu, X. G.; Nie, L. T.; Zhang, Y. L.; Yan, Y. L.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G. et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol. 2023, 25, 404–414.

[287]

Koutsaliaris, I. K.; Moschonas, I. C.; Pechlivani, L. M.; Tsouka, A. N.; Tselepis, A. D. Inflammation, oxidative stress, vascular aging and atherosclerotic ischemic stroke. Curr. Med. Chem. 2022, 29, 5496–5509.

[288]

Zhu, W. W.; Fang, T.; Zhang, W. J.; Liang, A.; Zhang, H.; Zhang, Z. P.; Zhang, X. E.; Li, F. A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. Nanoscale 2021, 13, 4634–4643.

[289]

Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794–6805.

[290]

Zhang, T. F.; Chen, X. Y.; Yuan, C. M.; Pang, X. B.; Shangguan, P.; Liu, Y. S.; Han, L. L.; Sun, J. W.; Lam, J. W. Y.; Liu, Y. et al. Near-infrared aggregation-induced emission luminogens for in vivo theranostics of Alzheimer’s disease. Angew. Chem., Int. Ed. 2023, 62, e202211550.

[291]

Edwards III, G.; Zhao, J.; Dash, P. K.; Soto, C.; Moreno-Gonzalez, I. Traumatic brain injury induces tau aggregation and spreading. J. Neurotrauma 2020, 37, 80–92.

[292]

Gulani, V.; Calamante, F.; Shellock, F. G.; Kanal, E.; Reeder, S. B. Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol. 2017, 16, 564–570.

[293]

Funke, S. K. I.; Factor, C.; Rasschaert, M.; Lezius, L.; Sperling, M.; Karst, U.; Robert, P. Long-term gadolinium retention in the healthy rat brain: Comparison between gadopiclenol, gadobutrol, and gadodiamide. Radiology 2022, 305, 179–189.

[294]

Mallio, C. A.; Rovira, À.; Parizel, P. M.; Quattrocchi, C. C. Exposure to gadolinium and neurotoxicity: Current status of preclinical and clinical studies. Neuroradiology 2020, 62, 925–934.

Nano Research
Pages 13134-13163
Cite this article:
Liang F, You Q, Ma X, et al. Nano-imaging agents for brain diseases: Environmentally responsive imaging and therapy. Nano Research, 2023, 16(12): 13134-13163. https://doi.org/10.1007/s12274-023-6149-1
Topics:
Part of a topical collection:

1204

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 29 June 2023
Revised: 30 August 2023
Accepted: 31 August 2023
Published: 06 November 2023
© Tsinghua University Press 2023
Return