Sort:
Review Article Issue
Nanomaterials for visualized tumor surgical navigation and postoperative recurrence inhibition
Nano Research 2023, 16(12): 13226-13249
Published: 14 December 2023
Abstract PDF (20.4 MB) Collect
Downloads:92

Preoperative localization of the tumor sites and intraoperative real-time monitoring are essential for precise surgery but are meanwhile challenging due to the lack of high-resolution, easy-to-operate, and fast visualization techniques. On the other hand, tumor recurrence and metastasis after surgery greatly reduce the survival rate of patients. Intervening tumor recurrence during surgery is a future direction of tumor treatment. Nanomaterials with external condition responsiveness (light, ultrasound, and magnetic field) can accurately assist intraoperative detection and surgical resection due to their functions such as tumor cell targeting, fluorescence imaging, and real time monitoring, providing a more accurate, shorter duration, and visualization method of surgical resection. Moreover, nanomaterials are versatile and can easily be tailored for application in different tumors. Locally filled or systemically circulating nanomaterials with slow drug release and residual tumor cell-targeting ability have promising applications in inhibiting tumor recurrence. Here, we review surgical navigation and postoperative recurrence interventional nanomaterials and their landscape in guiding tumor treatment. We summarize the classification and characteristics of these nanomaterials and discuss their application in the surgical navigation and recurrence inhibition of different tumors. We also provide an outlook on the challenges and future development of nanomaterials for visualized tumor surgical navigation and postoperative recurrence inhibition.

Review Article Issue
Nano-imaging agents for brain diseases: Environmentally responsive imaging and therapy
Nano Research 2023, 16(12): 13134-13163
Published: 06 November 2023
Abstract PDF (10.8 MB) Collect
Downloads:119

Precise imaging is essential for the accurate diagnosis and surgical guidance of brain diseases but it is challenging due to the difficulties in crossing the blood-brain barrier (BBB), the difficulties in disease lesion targeting, and the limited contrast in the brain environment. Nano-imaging agents were characterized by functionalized modifications, high contrast, small size, and high biocompatibility, thus providing advantages in BBB crossing, brain targeting, imaging resolution, and real-time monitoring, holding great potential in brain disease imaging. Specific characteristics in brain environment and brain diseases (e.g., marker proteins on the BBB, the pathogenic proteins in the neurodegenerative diseases or brain tumors, and the tumor and inflammatory microenvironment) provide opportunities for the functionalized nano-imaging agents to improve BBB crossing and disease targeting. Moreover, the versatile nano-imaging agents are endowed with therapeutic agents to facilitate the theranostics of brain diseases. Here, we summarized the common materials and imaging techniques of nano-imaging agents and their imaging treatment applications. We discussed their BBB penetration, environmental response for disease targeting, and therapeutic effects. We also provided insights on the advantages, challenges, and application of nano-imaging agents in detecting and treating brain diseases such as neurodegenerative diseases, brain tumors, stroke, and traumatic brain injury. These discussions will help develop nano-imaging agents-based theranostic platforms for the precise diagnosis and treatment of brain diseases.

Research Article Issue
Dual-functional extracellular vesicles enable synergistic treatment via m6A reader YTHDF1-targeting epigenetic regulation and chemotherapy
Nano Research 2023, 16(12): 13309-13321
Published: 13 October 2023
Abstract PDF (50.6 MB) Collect
Downloads:106

Chemotherapy remains one of the most prevailing strategies for cancer treatment. However, its treatment effect is hampered by drug resistance, nonspecific tumor targeting, and severe toxic side effects. Combination chemotherapy with synergistic effect has become an attractive tumor therapy. N6-methyladenosine (m6A) regulators determine the fate of m6A-modified transcripts and play vital roles in cancer development and drug resistance. Gene therapy such as small interfering RNA (siRNA) is a promising strategy to reduce the abnormal gene expression of m6A regulators. However, its poor selectivity and high systemic toxicity necessitate the use of delivery vectors to target specific cells and tissues. Here, we constructed a dual-functional targeted nanodrug platform for the synergetic m6A-associated epigenetic regulation and chemotherapy of ovarian cancer. We encapsulated siRNA targeting the m6A reader YT521-B homology (YTH) N6-methyladenosine RNA-binding protein 1 (YTHDF1) and docetaxel (DTX), the first-line chemotherapeutic agent of ovarian cancer, into mesenchymal stem cell-derived small extracellular vesicles (MsEVs). This nanosystem exhibits significant tumor targeting and endo/lysosomal escape of siYTHDF1. It effectively depletes YTHDF1 and suppresses the protein translation of eukaryotic translation initiation factor 3 subunit C (EIF3C) in an m6A-dependent manner. The combination of YTHDF1-targeting epigenetic regulation significantly enhances the anti-tumor effect of DTX and effectively inhibits ovarian cancer progression without causing significant systemic toxicity. This co-delivery nanoplatform offers a promising approach for combinational cancer treatment, showing improved anti-tumor efficacy through the synergistic effects of epigenetic regulation and chemotherapeutic inhibition.

Total 3