AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

MXenes and MXene-based composites for energy conversion and storage applications

Zhuohao Xiaoa,b( )Xiaodong XiaobLing Bing Kongc( )Hongbo Donga,( )Xiuying LibXinyuan SundBin HecShuangchen RuancJianpang Zhaic
School of Mechanical and Vehicle Engineering, Linyi University, Linyi, 276000, Shandong, China
School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, Guangdong, China
Department of Physics, Jinggangshan University, Ji'an, 343009, Jiangxi, China

Peer review under responsibility of The Chinese Ceramic Society.

Show Author Information

Graphical Abstract

Abstract

MXenes have received extensive attention from scholars due to their unique layered structure, significant electrical conductivity, and excellent mechanical properties. In addition to their pristine forms, they could also be incorporated with other components for attaining hybrids and nanocomposites, accompanying with amplified functionalities. It has been widely used in lithium batteries, supercapacitors, electromagnetic shielding, tumor therapy, biosensors, photocatalysis, and other fields, and has shown great application potential in energy conversion and storage. The purpose of this article is to encyclopaedically overview the latest progress in synthesis and characterization of MXenes, while their potential applications in energy conversation such as water splitting and solar cells, as well as in energy storage such as Li-ion batteries, supercapacitors, and hydrogen energy will be comprehensively elaborated. Development opportunities and challenges are summarized.

References

[1]

Zhou Aiguo, Yi Liu, Shibo Li, Wang Xiaohui, Guobing Ying. From structural ceramics to 2D materials with multi-applications: a review on the development from MAX phases to MXenes. J Adv Ceram 2021;10:1194–242.

[2]

Barsoum MW. The MN+1AXN phases: a new class of solids. Prog Solid State Chem 2000;28:201–81.

[3]

Sun ZM, Music D, Ahuja R, Li S, Schneider JM. Bonding and classification of nanolayered ternary carbides. Phys Rev B 2004;70:092102.

[4]

Emmerlich J, Music D, Eklund P, Wilhelmsson O, Jansson U, Schneider JM, et al. Thermal stability of Ti3SiC2 thin films. Acta Mater 2007;55:1479–88.

[5]

Sun ZM. Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 2011;56:143–66.

[6]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011;23:4248–53.

[7]
Barsoum MW. MAX phases: properties of machinable ternary carbides and nitrides. John Wiley & Sons; 2013.
[8]

Anasori B, Halim J, Lu J, Voigt CA, Hultman L, Barsoum MW. Mo2TiAlC2: a new ordered layered ternary carbide. Scripta Mater 2015;101:5–7.

[9]

Zhang HB, Zhou YC, Bao YW, Li MS, Wang JY. Intermediate phases in synthesis of Ti3SiC2 and Ti3Si(Al)C2 solid solutions from elemental powders. J Eur Ceram Soc 2006;26:2373–80.

[10]

Barsoum MW, El-Raghy T, Ali M. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall Mater Trans 2000;31:1857–65.

[11]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 2014;26:992–1005.

[12]

Lei JC, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics 2015;10:276–86.

[13]

Xiao Y, Hwang JY, Sun YK. Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. J Mater Chem 2016;4:10379–93.

[14]

Kumar P, Abuhimd H, Wahyudi W, Li ML, Ming J, Li LJ. Review - two-dimensional layered materials for energy storage applications. ECS Journal of Solid State Science and Technology 2016;5:Q3021-5.

[15]

Ng VMH, Huang H, Zhou K, Lee PS, Que WX, Xu JZ, et al. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem 2017;5:3039–68.

[16]

Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 2013;4:1716.

[17]

Zheng Z, Wu W, Yang T, Wang E, Du Z, Hou X, et al. In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance. J Adv Ceram 2021;10:1061–71.

[18]

Li Xinliang. Advancing electrochemistry: powering electromagnetic energy conversion. Joule 2023;7:462–4.

[19]

Huang Zhaodong, Zhang Rong, Zhang Shaoce, Pei Li, Li Chuan, Zhi Chunyi. Recent advances and future perspectives for aqueous zinc-ion capacitors. Mater Futures 2022;1:022101.

[20]

Liang Guojin, Li Xinliang, Wang Yanbo, Yang Shuo, Huang Zhaodong, Qi Yang, et al. Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy 2022;1:e9120002.

[21]

Li Xinliang, Ma Xinyao, Hou Yue, Zhang Zhenhua, Lu Yue, Huang Zhaodong, et al. Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. Joule 2021;5:2993–3005.

[22]

Wu Liming, Zhao Hang, Qian Li, Gai Liu Yan, Nan Mu, Ruiyu Mi. Layered Ti3C2 MXene/NaTiO2 composites as high-performance anode material for sodium ion battery. J Ceram 2021;42:990–6 [in Chinese)].

[23]

Li H, Du ZQ. MXene Fiber-based wearable textiles in sensing and energy storage applications. Fibers Polym 2023;24:1167–82.

[24]

Ampong DN, Agyekum E, Agyemang FO, Mensah-Darkwa K, Andrews A, Kumar A, et al. MXene: fundamentals to applications in electrochemical energy storage. Nanoscale Res Lett 2023;18:3.

[25]

Parajuli D, Murali N, Devendra KC, Karki B, Samatha K, Kim AA, et al. Advancements in MXene-polymer nanocomposites in energy storage and biomedical applications. Polymers 2022;14:3433.

[26]

Li XL, Huang ZD, Shuck CE, Liang GJ, Gogotsi Y, Zhi CY. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 2022;6:389–404.

[27]

Chen YC, Yang HC, Han ZJ, Bo Z, Yan JH, Cen KF, et al. MXene-based electrodes for supercapacitor energy storage. Energy Fuels 2022;36:2390–406.

[28]

Chaturvedi K, Hada V, Paul S, Sarma B, Malvi D, Dhangar M, et al. The rise of MXene: a wonder 2D material, from its synthesis and properties to its versatile applications-A comprehensive review. Top Curr Chem 2023;381:11.

[29]

Guo Hui, Li Xikun, Song Yuanyuan, Wang Chenchen, Huang Yiwen, Sun Qian. Optimization for the synthesis of Ti4AlN3 with orthogonal design. J Ceram 2022;43:121–8 [in Chinese].

[30]

LIANG Yunpeng, CAO Shiyi, WANG Junfeng, WANG Qimin, DAI Wei. Preparation of Arc deposited TiSiN coatings. J Ceram 2021;42:652–7 [in Chinese].

[31]

Gongye Lyu, Liang Feng, Qiu Danyang, Gu Haohui, Wu Shuaibing, Wang Xiaohan, et al. Research progress in preparation of two-dimensional Tin+1CnTx-MXenes and their ceramic matrix composites. J Ceram 2023;44:28–37 [in Chinese].

[32]

Li Xinliang, Li Minghang, Li Xin, Fan Xiaomeng, Zhi Chunyi. Low Infrared emissivity and strong stealth of Ti-based Mxenes. Research 2022:9892628.

[33]

Li Xinliang, Yin Xiaowei, Han Meikang, Song Changqing, Xu Hailong, Hou Zexin, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 2017;5:4068–74.

[34]

Li Xinliang, Yin Xiaowei, Song Changqing, Han Meikang, Xu Hailong, Duan Wenyan, et al. Self-assembly core–shell graphene-bridged hollow mxenes spheres 3D Foam with ultrahigh specific EM absorption performance. Adv Funct Mater 2018;28:1803938.

[35]

Mei J, Liao T, Kou LZ, Sun ZQ. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 2017;29:1700176.

[36]

Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat Energy 2017;2:17089.

[37]

Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials 2016;2:1600255.

[38]

Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Näslund LA, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 2014;26:2374–81.

[39]

Xu C, Wang LB, Liu ZB, Chen L, Guo JK, Kang N, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 2015;14:1135–41.

[40]

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem Mater 2017;29:7633–44.

[41]

Wang LB, Zhang H, Wang B, Shen CJ, Zhang CX, Hu QK, et al. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett 2016;12:702–10.

[42]

Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014;516:78–81.

[43]

Li HY, Hou Y, Wang FX, Lohe MR, Zhuang XD, Niu L, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances poosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater 2016;7:1601847.

[44]

Wang XF, Shen X, Gao YR, Wang ZX, Yu RC, Chen LQ. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J Am Chem Soc 2015;137:2715–21.

[45]

Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS Nano 2012;6:1322–31.

[46]

Sang XH, Xie Y, Lin MW, Alhabeb M, Van Aken KL, Gogotsi Y, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016;10:9193–200.

[47]

Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 2013;135:15966–9.

[48]

Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan LM, Zhang B, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun 2014;50:9517–20.

[49]

Anasori B, Xie Y, Beidaghi M, Lu J, Hosler BC, Hultman L, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015;9:9507–16.

[50]

Yang J, Naguib M, Ghidiu M, Pan LM, Gu J, Nanda J, et al. Two-dimensional Nb-based M4C3 solid solutions (MXenes). J Am Ceram Soc 2016;99:660–6.

[51]

Ran JR, Gao GP, Li FT, Ma TY, Du AJ, Qiao SZ. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 2017;8:13907.

[52]

Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao XD, et al. Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials. Nat Commun 2017;8:15717.

[53]

Xu BZ, Zhu MS, Zhang WC, Zhen X, Pei ZX, Xue Q, et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 2016;28:3333–9.

[54]

Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 2016;28:1517–22.

[55]

Hantanasirisakul K, Zhao MQ, Urbankowski P, Halim J, Anasori B, Kota S, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable opoelectronic properties. Advanced Electronic Materials 2016;2:1600050.

[56]

Liu FF, Zhou AG, Chen JF, Jin J, Zhou WJ, Wang LB, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci 2017;416:781–9.

[57]

Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013;341:1502–5.

[58]

Liu LY, Raymundo-Pinero E, Taberna PL, Simon P. Electrochemical characterization of Ti3C2Tx MXene prepared via a molten salt etching route in an acetonitrile-based electrolyte. Electrochem Commun 2023;148:107453.

[59]

Khan U, Luo YJ, Kong LB, Que WX. Synthesis of fluorine free MXene through lewis acidic etching for application as electrode of proton supercapacitors. J Alloys Compd 2022;926:166903.

[60]

Liu LY, Zschiesche H, Antonietti M, Gibilaro M, Chamelot P, Massot L, et al. In situ synthesis of MXene with tunable morphology by electrochemical etching of MAX phase prepared in molten salt. Adv Energy Mater 2023;13:202203805.

[61]

Chang FY, Li CS, Yang J, Tang H, Xue MQ. Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2. Mater Lett 2013;109:295–8.

[62]

Sun Z, Li S, Ahuja R, Schneider JM. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Commun 2004;129:589–92.

[63]

Liao LQ, Jiang S, Zhou SS, Wei XT, Duan CK, Yin M, et al. Enhanced upconverted emission in Yb3+/Er3+ co-doped GdPO4 transparent glass ceramics. Opt Commun 2014;326:130–3.

[64]

Frodelius J, Eklund P, Beckers M, Persson POA, Hogberg H, Hultman L. Sputter deposition from a Ti2AlC target: process characterization and conditions for growth of Ti2AlC. Thin Solid Films 2010;518:1621–6.

[65]

Feng AH, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des 2017;114:161–6.

[66]

Halim J, Kota S, Lukatskaya MR, Naguib M, Zhao MQ, Moon EJ, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater 2016;26:3118–27.

[67]

Liu FF, Zhou J, Wang SW, Wang BX, Shen C, Wang LB, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J Electrochem Soc 2017;164:A709-13.

[68]

Wu M, He Y, Wang L, Xia Q, Zhou A. Synthesis and electrochemical properties of V2C MXene by etching in opened/closed environments. J Adv Ceram 2020;9:749–58.

[69]

Zhong Y, Xia XH, Shi F, Zhan JY, Tu JP, Fan HJ. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci 2016;3:1500286.

[70]

Morel A, Borjon-Piron Y, Lucio Porto R, Brousse T, Belanger D. Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J Electrochem Soc 2016;163:A1077-82.

[71]

Naik GV, Schroeder JL, Ni XJ, Kildishev AV, Sands TD, Boltasseva A. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2012;2:478–89.

[72]

Xie Y, Kent PRC. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers. Phys Rev B 2013;87:235441.

[73]

Ye Q, Xiao P, Liu WL, Chen K, Chen T, Xue JM, et al. Exploring the potential of exfoliated ternary ultrathin Ti4AlN3 nanosheets for fabricating hybrid patterned polymer brushes. RSC Adv 2015;5:70339–44.

[74]

Urbankowski P, Anasori B, Makaryan T, Er DQ, Kota S, Walsh PL, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016;8:11385–91.

[75]

Xie XH, Xue Y, Li LJ, Chen SG, Nie Y, Ding W, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale 2014;6:11035–40.

[76]

Sun WJ, Zhao YY, Cheng XF, He JH, Lu JM. Surface functionalization of single-layered Ti3C2Tx MXene and its application in multilevel resistive memory. ACS Appl Mater Interfaces 2020;12:9865–71.

[77]

Meshkian R, Näslund LA, Halim J, Lu J, Barsoum MW, Rosen J. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Mater 2015;108:147–50.

[78]

Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum MW. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem Mater 2016;28:3507–14.

[79]

Zhang T, Pan LM, Tang H, Du F, Guo YH, Qiu T, et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J Alloys Compd 2017;695:818–26.

[80]

Naguib M, Unocic RR, Armstrong BL, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". Dalton Trans 2015;44:9353–8.

[81]

Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem 2014;2:14334–8.

[82]

Mashtalir O, Lukatskaya MR, Zhao MQ, Barsoum MW, Gogotsi Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater 2015;27:3501–6.

[83]

Wang HB, Zhang JF, Wu YP, Huang HJ, Li GY, Zhang X, et al. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl Surf Sci 2016;384:287–93.

[84]

Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 2011;40:4143–66.

[85]

Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang CF, Van Aken KL, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater 2015;27:339–45.

[86]

Xie XQ, Zhao MQ, Anasori B, Maleski K, Ren CE, Li JW, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016;26:513–23.

[87]

Lin ZY, Sun DF, Huang Q, Yang J, Barsoum MW, Yan XB. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem 2015;3:14096–100.

[88]

Naguib M, Mashtalir O, Lukatskaya MR, Dyatkin B, Zhang C, Presser V, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun 2014;50:7420–3.

[89]

Zhang CF, Kim SJ, Ghidiu M, Zhao MQ, Barsoum MW, Nicolosi V, et al. Layered orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high performance Li-ion batteries. Adv Funct Mater 2016;26:4143–51.

[90]

Ahmed B, Anjum DH, Hedhili MN, Gogotsi Y, Alshareef HN. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 2016;8:7580–7.

[91]

Gao YP, Wang LB, Zhou AG, Li ZY, Chen JK, Bala H, et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett 2015;150:62–4.

[92]

Wang F, Yang CH, Duan M, Tang Y, Zhu JF. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens Bioelectron 2015;74:1022–8.

[93]

Zhu JF, Tang Y, Yang CH, Wang F, Cao MJ. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J Electrochem Soc 2016;163:A785-91.

[94]

Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu ZL. Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem 2016;9:1490–7.

[95]

Peng C, Yang XF, Li YH, Yu H, Wang HJ, Peng F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 2016;8:6051–60.

[96]

Zhang QR, Teng J, Zou GD, Peng QM, Du Q, Jiao TF, et al. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016;8:7085–93.

[97]

Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu JS, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 2014;111:16676–81.

[98]

Liu RP, Li WH. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly(vinyl alcohol) (PVA) composites. ACS Omega 2018;3:2609–17.

[99]

Woo JH, Kim NH, Kim SI, Park OK, Lee JH. Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Compos B Eng 2020;199:108205.

[100]

Sobolciak P, Ali A, Hassan MK, Helal MI, Tanvir A, Popelka A, et al. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS One 2017;12:e018370.

[101]

Xu HL, Yin XW, Li XL, Li MH, Liang S, Zhang LT, et al. Lightweight Ti2CTx MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interfaces 2019;11:10198–207.

[102]

Deng QH, Chen BH, Bo ML, Feng YF, Huang YH, Zhou JQ. Interfacial fluorine migration-induced low leakage conduction in PVA based high-k composites with V2C MXene-SWCNT switchboard-like ceramic via ab initio MD simulations. J Mater Chem C 2021;9:1051–61.

[103]

Naguib M, Saito T, Lai S, Rager MS, Aytug T, Parans Paranthaman M, et al. Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Adv 2016;6:72069–73.

[104]

Wu XL, Hao L, Zhang JK, Zhang X, Wang JT, Liu JD. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J Membr Sci 2016;515:175–88.

[105]

Huang ZY, Wang SJ, Kota S, Pan QW, Barsoum MW, Li CY. Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer 2016;102:119–26.

[106]

Mayerberger EA, Urbanek O, McDaniel RM, Street RM, Barsoum MW, Schauer CL. Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning. J Appl Polym Sci 2017;134:45295.

[107]

Chen ZX, Han YQ, Li TX, Zhang XW, Wang TQ, Zhang ZL. Preparation and electrochemical performances of doped MXene/poly (3,4-ethylenedioxythiophene) composites. Mater Lett 2018;220:305–8.

[108]

Le TA, Tran NQ, Hong Y, Lee H. Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances. Chem--Eur J 2019;25:1037–43.

[109]

Wu WL, Wei D, Zhu JF, Niu DJ, Wang F, Wang L, et al. Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram Int 2019;45:7328–37.

[110]

Wei D, Wu WL, Zhu JF, Wang CW, Zhao CH, Wang L. A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J Electroanal Chem 2020;877:114538.

[111]

Yang DZ, Zhou B, Han GJ, Feng YZ, Ma JM, Han J, et al. Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance. ACS Appl Mater Interfaces 2021;13:8909–18.

[112]

Ren YY, Zhu JF, Wang L, Liu H, Liu Y, Wu WL, et al. Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett 2018;214:84–7.

[113]

VahidMohammadi A, Moncada J, Chen HZ, Kayali E, Orangi J, Carrero CA, et al. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J Mater Chem 2018;6:22123–33.

[114]

Wei HW, Dong JD, Fang XJ, Zheng WH, Sun YT, Qian Y, et al. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol 2019;169:52–9.

[115]

Yin G, Wang Y, Wang W, Yu D. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Colloids Surf A Physicochem Eng Asp 2020;601:125047.

[116]

Lu X, Zhu JF, Wu WL, Zhang B. Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim Acta 2017;228:282–9.

[117]

Wang Z, Cheng Z, Xie L, Hou XL, Fang CQ. Flexible and lightweight Ti3C2Tx MXene/Fe3O4@PANI composite films for high-performance electromagnetic interference shielding. Ceram Int 2021;47:5747–57.

[118]

Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem 2019;7:269–77.

[119]

Ghidiu M, Kota S, Halim J, Sherwood AW, Nedfors N, Rosen J, et al. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater 2017;29:1099–106.

[120]

Qin LY, Yang DZ, Zhang M, Zhao TY, Luo Z, Yu ZZ. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. J Colloid Interface Sci 2021;589:264–74.

[121]

Yan PT, Zhang RJ, Jia J, Wu C, Zhou AG, Xu J, et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J Power Sources 2015;284:38–43.

[122]

Yu P, Cao GJ, Yi S, Zhang X, Li C, Sun XZ, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 2018;10:5906–13.

[123]

Ding WJ, Liu P, Bai ZZ, Wang YY, Liu GQ, Jiang QL, et al. Constructing layered MXene/CNTs composite Film with 2D-3D sandwich structure for high thermoelectric performance. Adv Mater Interfac 2020;7:2001340.

[124]

Li XL, Yin XW, Han MK, Song CQ, Xu HL, Hou ZX, et al. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J Mater Chem C 2017;5:4068–74.

[125]

Li XL, Zhu JF, Wang L, Wu WL, Fang Y. In-situ growth of carbon nanotubes on two-dimensional titanium carbide for enhanced electrochemical performance. Electrochim Acta 2017;258:291–301.

[126]

Zheng W, Zhang P, Chen J, Tian WB, Zhang YM, Sun ZM. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J Mater Chem 2018;6:3543–51.

[127]

Zhang YK, Jiang HL, Lin YX, Liu HJ, He Q, Wu CQ, et al. In situ growth of cobalt nanoparticles encapsulated nitrogen-doped carbon nanotubes among Ti3C2Tx (MXene) matrix for oxygen reduction and evolution. Adv Mater Interfac 2018;5:1800392.

[128]

Chen JN, Yuan XL, Lyu FL, Zhong QX, Hu HC, Pan Q, et al. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J Mater Chem 2019;7:1281–6.

[129]

Xu EZ, Li PC, Quan JJ, Zhu HW, Wang L, Chang YJ, et al. Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for high-capacity, stable sodium storage. Nano-Micro Lett 2021;13:40.

[130]

Yang L, Zheng W, Zhang P, Chen J, Tian WB, Zhang YM, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J Electroanal Chem 2018;830:1–6.

[131]

Lv LP, Guo CF, Sun WW, Wang Y. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 2019;15:1804338.

[132]

Aïssa B, Ali A, Mahmoud KA, Haddad T, Nedil M. Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl Phys Lett 2016;109:043109.

[133]

Li HY, Hou Y, Wang FX, Lohe MR, Zhuang XD, Niu L, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater 2017;7:1601847.

[134]

Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 2017;27:1701264.

[135]

Xu SK, Wei GD, Li JZ, Han W, Gogotsi Y. Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J Mater Chem 2017;5:17442–51.

[136]

Yang QY, Xu Z, Fang B, Huang TQ, Cai SY, Chen H, et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J Mater Chem 2017;5:22113–9.

[137]

Ma ZY, Zhou XF, Deng W, Lei D, Liu ZP. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl Mater Interfaces 2018;10:3634–43.

[138]

Xu SK, Dall'Agnese Y, Li JZ, Gogotsi Y, Han W. Thermally reduced graphene/MXene film for enhanced Li-ion storage. Chem–Eur J 2018;24:18556–63.

[139]

Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018;12:11193–202.

[140]

Qu LL, Wang SP, Yang XW, Sun CJ. MXene/reduced graphene oxide hydrogel film extraction combined with gas chromatography-tandem mass spectrometry for the determination of 16 polycyclic aromatic hydrocarbons in river and tap water. J Chromatogr A 2019;1584:24–32.

[141]

Zhou TZ, Wu C, Wang YL, Tomsia AP, Li MZ, Saiz E, et al. Super-tough MXene-functionalized graphene sheets. Nat Commun 2020;11:2077.

[142]

Aissa B, Sinopoli A, Ali A, Zakaria Y, Zekri A, Helal M, et al. Nanoelectromagnetic of a highly conductive 2D transition metal carbide (MXene)/Graphene nanoplatelets composite in the EHF M-band frequency. Carbon 2021;173:528–39.

[143]

Ma TY, Cao JL, Jaroniec M, Qiao SZ. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem Int Ed 2016;55:1138–42.

[144]

Shao MM, Shao YF, Chai JW, Qu YJ, Yang MY, Wang ZL, et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J Mater Chem 2017;5:16748–56.

[145]

Su TM, Hood ZD, Naguib M, Bai L, Luo S, Rouleau CM, et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 2019:30788480.

[146]

Li JM, Zhao L, Wang SM, Li J, Wang GH, Wang J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl Surf Sci 2020;515:145922.

[147]

An XQ, Wang W, Wang JP, Duan HZ, Shi JT, Yu XL. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys Chem Chem Phys 2018;20:11405–11.

[148]

Zou GD, Zhang ZW, Guo JX, Liu BZ, Zhang QR, Fernandez C, et al. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interfaces 2016;8:22280–6.

[149]

Li L, Zhang N, Zhang MY, Wu L, Zhang XT, Zhang ZG. Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors. ACS Sustainable Chem Eng 2018;6:7442–50.

[150]

Zhang ZW, Li HN, Zou GD, Fernandez C, Liu BZ, Zhang QR, et al. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chem Eng 2016;4:6763–71.

[151]

Pandey RP, Rasool K, Madhavan VE, Aissa B, Gogotsi Y, Mahmoud KA. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J Mater Chem 2018;6:3522–33.

[152]

Ji C, Wang Y, Ye ZQ, Tan LY, Mao DS, Zhao WG, et al. Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials. ACS Appl Mater Interfaces 2020;12:24298–307.

[153]

Sun B, Tao FR, Huang ZX, Yan W, Zhang YX, Dong XS, et al. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl Surf Sci 2021;535:147354.

[154]

Tang WT, Dong ZL, Zhang R, Yi X, Yang K, Jin ML, et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano 2019;13:284–94.

[155]

Xie HH, Li PH, Shao JD, Huang H, Chen Y, Jiang ZY, et al. Electrostatic self-assembly of Ti3C2Tx MXene and gold nanorods as an efficient surface-enhanced Raman scattering platform for reliable and high-densitivity determination of organic pollutants. ACS Sens 2019;4:2303–10.

[156]

Song DD, Jiang XY, Li YS, Lu X, Luan SR, Wang YZ, et al. Metal-organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/Au NPs composites for electrochemical pesticide detection. J Hazard Mater 2019;373:367–76.

[157]

Jiang TC, Huang YS, Meng XQ. CdS core-Au/MXene-based photodetectors: positive deep-UV photoresponse and negative UV-Vis-NIR photoresponse. Appl Surf Sci 2020;513:145813.

[158]

Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, et al. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sensor Actuator B Chem 2018;263:360–8.

[159]

Filip J, Zavahir S, Lorencova L, Bertok T, Bin Yousaf A, Mahmoud KA, et al. Tailoring electrocatalytic properties of Pt nanoparticles grown on Ti3C2Tx MXene surface. J Electrochem Soc 2019;166:H54-62.

[160]

Wang YJ, Wang JK, Han GK, Du CY, Deng QH, Gao YZ, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction. Ceram Int 2019;45:2411–7.

[161]

Xiu LY, Pei W, Zhou S, Wang ZY, Yang PJ, Zhao JJ, et al. Multilevel hollow MXene tailored low-Pt catalyst for efficient hydrogen evolution in full-pH range and seawater. Adv Funct Mater 2020;30:201910028.

[162]

Cui C, Cheng RF, Zhang H, Zhang C, Ma YH, Shi C, et al. Ultrastable MXene@Pt/SWCNTs' nanocatalysts for hydrogen evolution reaction. Adv Funct Mater 2020;30:202000693.

[163]

Yin JJ, Zhang L, Jiao TF, Zou GD, Bai ZH, Chen Y, et al. Highly efficient catalytic performances of nitro compounds and morin via self-assembled MXene-Pd nanocomposites synthesized through self-reduction strategy. Nanomaterials 2019;9:1009.

[164]

Zhu ZY, Liu CC, Jiang FX, Liu J, Ma XM, Liu P, et al. Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J Hazard Mater 2020;399:123054.

[165]

Satheeshkumar E, Makaryan T, Melikyan A, Minassian H, Gogotsi Y, Yoshimura M. One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci Rep 2016;6:32049.

[166]

Zhu XY, Liu P, Xue T, Ge Y, Ai SR, Sheng YY, et al. A novel graphene-like titanium carbide MXene/Au-Ag nanoshuttles bifunctional nanosensor for electrochemical and SERS intelligent analysis of ultra-trace carbendazim coupled with machine learning. Ceram Int 2021;47:173–84.

[167]

Zheng JS, Wang B, Ding AL, Weng B, Chen JC. Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine. J Electroanal Chem 2018;816:189–94.

[168]

Ghassemi H, Harlow W, Mashtalir O, Beidaghi M, Lukatskaya MR, Gogotsi Y, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem 2014;2:14339–43.

[169]

Li ZY, Wang LB, Sun DD, Zhang YD, Liu BZ, Hu QK, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng, B 2015;191:33–40.

[170]

Li JX, Du YL, Huo CX, Wang S, Cui C. Thermal stability of two-dimensional Ti2C nanosheets. Ceram Int 2015;41:2631–5.

[171]

Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT MXene electrodes for supercapacitor applications. Chem Mater 2015;27:5314–23.

[172]

Xiao SH, Zhang XQ, Zhang JW, Wu SM, Wang J, Chen JS, et al. Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceram Int 2018;44:17660–6.

[173]

Gao XT, Xie Y, Zhu XD, Sun KN, Xie XM, Liu YT, et al. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small 2018;14:1802443.

[174]

Du C, Wu J, Yang P, Li SY, Xu JM, Song KX. Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim Acta 2019;295:1067–74.

[175]

Chen X, Lia J, Pan GC, Xu W, Zhu JY, Zhou DL, et al. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sensor Actuator B Chem 2019;289:131–7.

[176]

Huang J, Wan H, Li M, Zhang Y, Zhu J, Li X, et al. In-situ growth of MAX phase coatings on carbonised wood and their terahertz shielding properties. J Adv Ceram 2021;10:1291–8.

[177]

Li YJ, Deng XT, Tian J, Liang ZQ, Cui HZ. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl Mater Today 2018;13:217–27.

[178]

Low JX, Zhang LY, Tong T, Shen BJ, Yu JG. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal 2018;361:255–66.

[179]

Xu Z, Sun YQ, Zhuang YX, Jing WH, Ye H, Cui ZF. Assembly of 2D MXene nanosheets and TiO2 nanoparticles for fabricating mesoporous TiO2-MXene membranes. J Membr Sci 2018;564:35–43.

[180]

Hao NX, Wei Y, Wang JL, Wang ZW, Zhu ZH, Zhao SL, et al. In situ hybridization of an MXene/TiO2/NiFeCo-layered double hydroxide composite for electrochemical and photoelectrochemical oxygen evolution. RSC Adv 2018;8:20576–84.

[181]

Li YJ, Yin ZH, Ji GR, Liang ZQ, Xue YJ, Guo YC, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl Catal B Environ 2019;246:12–20.

[182]

Li L, Jiang GX, An CH, Xie ZJ, Wang YJ, Jiao LF, et al. Hierarchical Ti3C2@TiO2 MXene hybrids with tunable interlayer distance for highly durable lithium-ion batteries. Nanoscale 2020;12:10369–79.

[183]

Huang KL, Li CH, Meng XC. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 2020;580:669–80.

[184]

Khan AA, Tahir M. Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in-situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light. Appl Catal B Environ 2021;285:119777.

[185]

Wang Y, Lubbers T, Xia R, Zhang YZ, Mehrali M, Huijben M, et al. Printable two-dimensional V2O5/MXene heterostructure cathode for lithium-ion battery. J Electrochem Soc 2021;168:020507.

[186]

Huang YY, Zhuo G, Han L, Wang YY, Kang SM, Lu JJ. Facile synthesis and application of V2O5/MXene nanocomposites as electrode materials for supercapacitors. Nanosci Nanotechnol Lett 2018;10:1633–43.

[187]

Wu F, Jiang Y, Ye ZQ, Huang YX, Wang ZH, Li SJ, et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem 2019;7:1315–22.

[188]

Rakhi RB, Ahmed B, Anjum DH, Alshareef HN. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl Mater Interfaces 2016;8:18806–14.

[189]

Jiang HM, Wang ZG, Yang Q, Hanif M, Wang ZM, Dong LC, et al. A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochim Acta 2018;290:695–703.

[190]

Chen SG, Xiang YF, Xu WJ, Peng C. A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg Chem Front 2019;6:199–208.

[191]

Shi MJ, Wang B, Chen C, Lang JW, Yan C, Yan XB. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J Mater Chem 2020;8:24635–44.

[192]

Liu Q, Yang JJ, Luo XG, Miao YF, Zhang Y, Xu WT, et al. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram Int 2020;46:11874–81.

[193]

Tian YP, Yang CH, Que WX, Liu XB, Yin XT, Kong LB. Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J Power Sources 2017;359:332–9.

[194]

Tang X, Liu H, Guo X, Wang SJ, Wu WJ, Mondal AK, et al. A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Mater Chem Front 2018;2:1811–21.

[195]

Zhang HL, Li M, Cao JL, Tang QJ, Kang P, Zhu CX, et al. 2D α-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram Int 2018;44:19958–62.

[196]

Li F, Liu YL, Wang GG, Zhang HY, Zhang B, Li GZ, et al. Few-layered Ti3C2Tx MXenes coupled with Fe2O3 nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. J Mater Chem 2019;7:22631–41.

[197]

Ma YL, Sheng HW, Dou W, Su Q, Zhou JY, Xie EQ, et al. Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance. ACS Appl Mater Interfaces 2020;12:41410–8.

[198]

Su JB, Zhao XL, Zhou WC, Wang CB, Zhang PK. Fe2O3-decoration and multilayer structure design of Ti3C2 MXene materials toward strong and broadband absorption of electromagnetic waves in the X-band region. J Mater Sci Mater Electron 2021;32:35919–32.

[199]

Zhang HL, Li M, Zhu CX, Tang QJ, Kang P, Cao JH. Preparation of magnetic alpha-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram Int 2020;46:81–8.

[200]

Liu PJ, Ng VMH, Yao ZJ, Zhou JT, Kong LB. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater Lett 2018;229:286–9.

[201]

Liu PJ, Yao ZJ, Ng VMH, Zhou JT, Kong LB, Yue K. Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos Appl Sci Manuf 2018;115:371–82.

[202]

Wang YS, Li YY, Qiu ZP, Wu XZ, Zhou PF, Zhou T, et al. Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J Mater Chem 2018;6:11189–97.

[203]

Zhang X, Wang HH, Hu R, Huang CY, Zhong WJ, Pan LM, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl Surf Sci 2019;484:383–91.

[204]

Deng BW, Liu ZC, Pan F, Xiang Z, Zhang X, Lu W. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J Mater Chem 2021;9:3500–10.

[205]

Adeyemo AA, Adeoye IO, Bello OS. Metal organic frameworks as adsorbents for dye adsorption: overview, prospects and future challenges. Toxicol Environ Chem 2012;94:1846–63.

[206]

Huang XX, Wang R, Jiao TF, Zou GD, Zhan FK, Yin JJ, et al. Facile preparation of hierarchical AgNP-loaded MXene/Fe3O4/Polymer nanocomposites by electrospinning with enhanced catalytic performance for wastewater treatment. ACS Omega 2019;4:1897–906.

[207]

Liu YX, Luo R, Li Y, Qi JW, Wang CH, Li JS, et al. Sandwich-like Co3O4/MXene composite with enhanced catalytic performance for Bisphenol A degradation. Chem Eng J 2018;347:731–40.

[208]

Luo SS, Wang R, Yin JJ, Jiao TF, Chen KY, Zou GD, et al. Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 2019;4:3946–53.

[209]

Deng RX, Chen BB, Li HG, Zhang K, Zhang T, Yu Y, et al. MXene/Co3O4 composite material: stable synthesis and its enhanced broadband microwave absorption. Appl Surf Sci 2019;488:921–30.

[210]

Wang C, Zhu XD, Mao YC, Wang F, Gao XT, Qiu SY, et al. MXene-supported Co3O4 quantum dots for superior lithium storage and oxygen evolution activities. Chem Commun 2019;55:1237–40.

[211]

Tan LH, Lv J, Xu XR, Zhao HF, He CM, Wang H, et al. Construction of MXene/NiO composites through in-situ precipitation strategy for dispersibility improvement of NiO nanoparticles. Ceram Int 2019;45:6597–600.

[212]

Zhao HF, Lv J, Sang JS, Zhu L, Zheng P, Andrew GL, et al. A facile method to construct MXene/CuO nanocomposite with enhanced catalytic activity of CuO on thermal decomposition of ammonium perchlorate. Materials 2018;11:2457.

[213]

Hermawan A, Zhang B, Taufik A, Asakura Y, Hasegawa T, Zhu JF, et al. CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl Nano Mater 2020;3:4755–66.

[214]

Deng QH, Zhou FR, Bo ML, Feng YF, Huang YH, Peng C. Remarkably improving dielectric response of polymer/hybrid ceramic composites based on 0D/2D-stacked CuO/V2C MXene heterojunction. Appl Surf Sci 2021;545:149008.

[215]

Gao YP, Wang LB, Li ZY, Zhou AG, Hu QK, Cao XX. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci 2014;35:62–5.

[216]

Zeng ZP, Yan YB, Chen J, Zan P, Tian QH, Chen P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater 2019;29:1806500.

[217]

Wang F, Cao MJ, Qin Y, Zhu JF, Wang L, Tang Y. ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Adv 2016;6:88934–42.

[218]

Qian Y, Wei HW, Dong JD, Du YZ, Fang XJ, Zheng WH, et al. Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram Int 2017;43:10757–62.

[219]

Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, et al. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide. Adv Mater 2018;30:1801846.

[220]

Ul Haq Y, Murtaza I, Mazhar S, Ahmad N, Qarni AA, Ul Haq Z, et al. Investigation of improved dielectric and thermal properties of ternary nanocomposite PMMA/MXene/ZnO fabricated by in-situ bulk polymerization. J Appl Polym Sci 2020;137:e49197.

[221]

Zhang CF, Beidaghi M, Naguib M, Lukatskaya MR, Zhao MQ, Dyatkin B, et al. Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chem Mater 2016;28:3937–43.

[222]

Ambade SB, Ambade RB, Eom W, Noh SH, Kim SH, Han TH. 2D Ti3C2 MXene/WO3 hybrid architectures for high-rate supercapacitors. Adv Mater Interfac 2018;5:1801361.

[223]

Peng C, Kuai ZY, Zeng TQ, Yu Y, Li ZF, Zuo JT, et al. WO3 Nanorods/MXene composite as high performance electrode for supercapacitors. J Alloys Compd 2019;810:151928.

[224]

Wang F, Wang ZJ, Zhu JF, Yang HB, Chen XJ, Wang L, et al. Facile synthesis SnO2 nanoparticle-modified Ti3C2 MXene nanocomposites for enhanced lithium storage application. J Mater Sci 2017;52:3556–65.

[225]

Ahmed B, Anjum DH, Gogotsi Y, Alshareef HN. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017;34:249–56.

[226]

Xiong J, Pan LM, Wang HH, Du F, Chen YM, Yang J, et al. Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim Acta 2018;268:503–11.

[227]

Liu H, Zhang X, Zhu YF, Cao B, Zhu QZ, Zhang P, et al. Electrostatic self-assembly of 0D-2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett 2019;11:65.

[228]

Yang L, Dall'Agnese Y, Hantanasirisakul K, Shuck CE, Maleski K, Alhabeb M, et al. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J Mater Chem 2019;7:5635–42.

[229]

Tariq A, Ali SI, Akinwande D, Rizwan S. Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd3+- and Sn4+-codoped bismuth ferrite. ACS Omega 2018;3:13828–36.

[230]

Iqbal MA, Ali SI, Amin F, Tariq A, Iqbal MZ, Rizwan S. La- and Mn-codoped bismuth ferrite/Ti3C2 MXene composites for efficient photocatalytic degradation of Congo red dye. ACS Omega 2019;4:8661–8.

[231]

Lu M, Li HJ, Han WJ, Wang YZ, Shi W, Wang JH, et al. Integrated MXene&CoFe2O4 electrodes with multi-level interfacial architectures for synergistic lithium-ion storage. Nanoscale 2019;11:15037–42.

[232]

Tang Y, Yang CH, Yang YW, Yin XT, Que WX, Zhu JF. Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution. Electrochim Acta 2019;296:762–70.

[233]

Liu PJ, Yao ZJ, Ng VMH, Zhou JT, Kong LB. Novel multilayer-like structure of Ti3C2Tx/CNZF composites for low-frequency electromagnetic absorption. Mater Lett 2019;248:214–7.

[234]

Li BH, Guo HR, Wang YR, Zhang WX, Zhang QJ, Chen L, et al. Asymmetric MXene/monolayer transition metal dichalcogenide heterostructures for functional applications. npj Comput Mater 2019;5:16.

[235]

Ma ZN, Hu ZP, Zhao XD, Tang Q, Wu DH, Zhou Z, et al. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J Phys Chem C 2014;118:5593–9.

[236]

Wang C, Zhu XD, Wang KX, Gu LL, Qiu SY, Gao XT, et al. A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage. Sustain Energy Fuels 2019;3:2577–82.

[237]

Xu Y, Ang YS, Wu L, Ang LK. High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: a theoretical study. Nanomaterials 2019;9:165.

[238]

Xu J, Shim J, Park JH, Lee S. MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv Funct Mater 2016;26:5328–34.

[239]

Shen CJ, Wang LB, Zhou AG, Zhang H, Chen ZH, Hu QK, et al. MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-lon batteries. J Electrochem Soc 2017;164:A2654-9.

[240]

Chen C, Xie XQ, Anasori B, Sarycheva A, Makaryan T, Zhao MQ, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew Chem Int Ed 2018;57:1846–50.

[241]

Zhang YL, Mu ZJ, Yang C, Xu ZK, Zhang S, Zhang XY, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv Funct Mater 2018;28:1707578.

[242]

Wu YT, Nie P, Jiang JM, Ding B, Dou H, Zhang XG. MoS2-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries. Chemelectrochem 2017;4:1560–5.

[243]

Xu M, Bai N, Li HX, Hu C, Qi J, Yan XB. Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chin Chem Lett 2018;29:1313–6.

[244]

Attanayake NH, Abeyweera SC, Thenuwara AC, Anasori B, Gogotsi Y, Sun YG, et al. Vertically aligned MoS2 on Ti3C2 (MXene) as an improved HER catalyst. J Mater Chem 2018;6:16882–9.

[245]

Yang XL, Jia QJ, Duan FH, Hu B, Wang MH, He LH, et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci 2019;464:78–87.

[246]

Liang JM, Ding CY, Liu JP, Chen T, Peng WC, Li Y, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media. Nanoscale 2019;11:10992–1000.

[247]

Hu L, Sun YY, Gong SJ, Zong H, Yu K, Zhu ZQ. Experimental and theoretical investigation on MoS2/MXene heterostructure as an efficient electrocatalyst for hydrogen evolution in both acidic and alkaline media. New J Chem 2020;44:7902–11.

[248]

Huang HW, Cui J, Liu GX, Bi R, Zhang L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019;13:3448–56.

[249]

Li N, Zhang YF, Jia ML, Lv XD, Li XT, Li R, et al. 1T/2H MoSe2-on-MXene heterostructure as bifunctional electrocatalyst for efficient overall water splitting. Electrochim Acta 2019;326:134976.

[250]

Su WT, Wang SG, Fu L, Chen F, Song KX, Huang XW, et al. Growth of WS2 flakes on Ti3C2Tx Mxene using vapor transportation routine. Coatings 2018;8:281.

[251]

Vyskocil J, Mayorga-Martinez CC, Szokolova K, Dash A, Gonzalez-Julian J, Sofer Z, et al. 2D stacks of MXene Ti3C2 and 1T-phase WS2 with enhanced capacitive behavior. Chemelectrochem 2019;6:3982–6.

[252]

Guo ZL, Zhou J, Zhu LG, Sun ZM. MXene: a promising photocatalyst for water splitting. J Mater Chem 2016;4:11446–52.

[253]

Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 2016;1:589–94.

[254]

Huang B, Zhou NG, Chen XZ, Ong WJ, Li N. Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene). Chem--Eur J 2018;24:18479–86.

[255]

Xiu LY, Wang ZY, Yu MZ, Wu XH, Qiu JS. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 2018;12:8017–28.

[256]

Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu ZL. Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem 2016;9:1490–7.

[257]

Peng C, Wei P, Li XY, Liu YP, Cao YH, Wang HJ, et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018;53:97–107.

[258]

Du CF, Khang Ngoc D, Liang QH, Zheng Y, Luo YB, Zhang JL, et al. Self-assemble and in situ formation of Ni1-xFexPS3 nanomosaic-decorated MXene hybrids for overall water splitting. Adv Energy Mater 2018;8:1801127.

[259]

Su TM, Peng R, Hood ZD, Naguib M. Ivanov IN, Keum JK, et al. One-Step Synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 2018;11:688–99.

[260]

Zhao CX, Yang XF, Han CH, Xu JS. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Solar RRL 2020;4:1900434.

[261]

Du X, Zhao TY, Xiu ZY, Xing ZP, Li ZZ, Pan K, et al. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Appl Mater Today 2020;20:100719.

[262]

Guo ZL, Gao LG, Xu ZH, Teo S, Zhang C, Kamata Y, et al. High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small 2018;14:1802738.

[263]

Chen TT, Tong GQ, Xu EZ, Li H, Li PC, Zhu ZF, et al. Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J Mater Chem 2019;7:20597–603.

[264]

Jin X, Yang L, Wang XF. Efficient two-dimensional perovskite solar cells realized by incorporation of Ti3C2Tx MXene as nano-dopants. Nano-Micro Lett 2021;13:68.

[265]

Yang L, Kan DX, Dall'Agnese C, Dall'Agnese Y, Wang BN, Jena AK, et al. Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti3C2Tx in air. J Mater Chem 2021;9:5016–25.

[266]

Wang JM, Cai ZZ, Lin DX, Chen K, Zhao LC, Xie FY, et al. Plasma oxidized Ti3C2Tx MXene as electron transport layer for efficient perovskite solar cells. ACS Appl Mater Interfaces 2021;13:32495–502.

[267]

Chava VSN, Chandrasekhar PS, Gomez A, Echegoyen L, Sreenivasan ST. MXene-based tailoring of carrier dynamics, defect passivation, and interfacial band alignment for efficient planar p-i-n perovskite solar cells. ACS Appl Energy Mater 2021;4:12137–48.

[268]

Wen JY, Sun ZC, Qiao Y, Zhou Y, Liu YB, Zhang QQ, et al. Ti3C2 MXene-reduced graphene oxide composite polymer-based printable electrolyte for qquasi-solid-state dye-sensitized solar cells. ACS Appl Energy Mater 2022;5:3329–38.

[269]

Yang YG, Lu HZ, Feng SL, Yang LF, Dong H, Wang JO, et al. Modulation of perovskite crystallization processes towards highly efficient and stable perovskite solar cells with MXene quantum dot-modified SnO2. Energy Environ Sci 2021;14:3447–54.

[270]

Fu HC, Ramalingam V, Kim H, Lin CH, Fang XS, Alshareef HN, et al. MXene-contacted silicon solar cells with 11.5% efficiency. Adv Energy Mater 2019;9:1900180.

[271]

Aydin E, El-Demellawi JK, Yarali E, Aljamaan F, Sansoni S, Rehman AU, et al. Scaled deposition of Ti3C2Tx MXene on complex surfaces: application assessment as rear electrodes for silicon heterojunction solar cells. ACS Nano 2022;16:2419–28.

[272]

Zhang X, Zhang ZH, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem 2018;27:73–85.

[273]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2017;2:16098.

[274]

Chaudhari NK, Jin H, Kim BY, Baek DS, Joo SH, Lee KY. MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem 2017;5:24564–79.

[275]

Okubo M, Sugahara A, Kajiyama S, Yamada A. MXene as a charge storage host. Accounts Chem Res 2018;51:591–9.

[276]

Sun SJ, Liao C, Hafez AM, Zhu HL, Wu SP. Two-dimensional MXenes for energy storage. Chem Eng J 2018;338:27–45.

[277]

Sun YJ, Chen DS, Liang ZQ. Two-dimensional MXenes for energy storage and conversion applications. Mater Today Energy 2017;5:22–36.

[278]

Tang H, Hu Q, Zheng MB, Chi Y, Qin XY, Pang H, et al. MXene-2D layered electrode materials for energy storage. Progress in Natural Science-Materials International 2018;28:133–47.

[279]

Xiong DB, Li XF, Bai ZM, Lu SG. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018;14:1703419.

[280]

Yoon YH, Lee KS, Lee HY. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology 2016;27:172001.

[281]

Sun DD, Wang MS, Li ZY, Fan GX, Fan LZ, Zhou AG. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun 2014;47:80–3.

[282]

Kim SJ, Naguib M, Zhao MQ, Zhang CF, Jung HT, Barsoum MW, et al. High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries. Electrochim Acta 2015;163:246–51.

[283]

Ren CE, Zhao MQ, Makaryan T, Halim J, Boota M, Kota S, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. Chemelectrochem 2016;3:689–93.

[284]

Byeon AY, Zhao MQ, Ren CE, Halim J, Kota S, Urbankowski P, et al. Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl Mater Interfaces 2017;9:4296–300.

[285]

Luo JM, Tao XY, Zhang J, Xia Y, Huang H, Zhang LY, et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016;10:2491–9.

[286]

Wu XH, Wang ZY, Yu MZ, Xiu LY, Qiu JS. Stabilizing the MXenes by carbon nanoplating for eeveloping hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater 2017;29:1607017.

[287]

Li X, Chen ZY, Li A, Yu YC, Chen XH, Song HH. Three-dimensional hierarchical porous structures constructed by Two-stage MXene-wrapped Si nanoparticles for Li-ion batteries. ACS Appl Mater Interfaces 2020;12:48718–28.

[288]

Naguib M, Come J, Dyatkin B, Presser V, Taberna PL, Simon P, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 2012;16:61–4.

[289]

Zhou J, Gao SH, Guo ZL, Sun ZM. Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram Int 2017;43:11450–4.

[290]

Zhou J, Zha XH, Zhou XB, Chen FY, Gao GL, Wang SW, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 2017;11:3841–50.

[291]

Zhao SS, Meng X, Zhu K, Du F, Chen G, Wei YJ, et al. Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Storage Mater 2017;8:42–8.

[292]

Ali A, Hantanasirisakul K, Abdala A, Urbankowski P, Zhao MQ, Anasori B, et al. Effect of synthesis on performance of MXene/iron oxide anode material for lithium-ion batteries. Langmuir 2018;34:11325–34.

[293]

Kumar R, Liu J, Hwang JY, Sun YK. Recent research trends in Li-S batteries. J Mater Chem 2018;6:11582–605.

[294]

Liu J, Zhang Q, Sun YK. Recent progress of advanced binders for Li-S batteries. J Power Sources 2018;396:19–32.

[295]

Fan ZM, Wang YS, Xie ZM, Wang DL, Yuan Y, Kang HJ, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci 2018;5:1800750.

[296]

Zhang J, Huang H, Bae JW, Chung SH, Zhang WK, Manthiram A, et al. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: structure design and interfacial chemistry. Small Methods 2018;2.

[297]

Zheng D, Wang GW, Liu D, Si JY, Ding TY, Qu DY, et al. The progress of Li-S batteries-understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes. Advanced Materials Technologies 2018;3:1700233.

[298]

Zhao YM, Zhao JX. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium-sulfur batteries: a computational study. Appl Surf Sci 2017;412:591–8.

[299]

Rao DW, Zhang LY, Wang YH, Meng ZS, Qian XY, Liu JH, et al. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J Phys Chem C 2017;121:11047–54.

[300]

Song JJ, Su DW, Xie XQ, Guo X, Bao WZ, Shao GJ, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl Mater Interfaces 2016;8:29427–33.

[301]

Liang X, Garsuch A, Nazar LF. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem Int Ed 2015;54:3907–11.

[302]

Liang X, Rangom Y, Kwok CY, Pang Q, Nazar LF. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater 2017;29:1603040.

[303]

Bao WZ, Xie XQ, Xu J, Guo X, Song JJ, Wu WJ, et al. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem--Eur J 2017;23:12613–9.

[304]

Dong YF, Zheng SH, Qin JQ, Zhao XJ, Shi HD, Wang XH, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018;12:2381–8.

[305]

Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 2016;10:3334–41.

[306]

Zhao MQ, Xie XQ, Ren CE, Makaryan T, Anasori B, Wang GX, et al. Hollow mXene spheres and 3D macroporous mXene frameworks for Na-ion storage. Adv Mater 2017;29:1702410.

[307]

Marie-Claude Bay, Grissa Rabeb, Egorov Konstantin V, Asakura Ryo, Battaglia Corsin. Low Na-β′′-alumina electrolyte/cathode interfacial resistance enabled by a hydroborate electrolyte opening up new cell architecture designs for all solid-state sodium batteries. Mater Futures 2022;1:031001.

[308]

Guo X, Xie XQ, Choi SH, Zhao YF, Liu H, Wang CY, et al. Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J Mater Chem 2017;5:12445–52.

[309]

Dong YF, Wu ZS, Zheng SH, Wang XH, Qin JQ, Wang S, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 2017;11:4792–800.

[310]

Tao ML, Zhang YQ, Zhan RM, Guo BS, Xu QJ, Xu MW. A chemically bonded CoNiO2 nanoparticles/MXene composite as anode for sodium-ion batteries. Mater Lett 2018;230:173–6.

[311]

Zhang YQ, Zhan RM, Xu QJ, Liu H, Tao ML, Luo YS, et al. Circuit board-like CoS/MXene composite with superior performance for sodium storage. Chem Eng J 2019;357:220–5.

[312]

Peng SJ, Han XP, Li LL, Zhu ZQ, Cheng FY, Srinivansan MU, et al. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016;12:1359–68.

[313]

Han F, Zhang CZ, Sun B, Tang W, Yang JX, Li XK. Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium ion batteries. Carbon 2017;118:731–42.

[314]

Yin FX, Yang P, Yuan WJ, Semencha A, Zhang CW, Ji PG, et al. Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors. J Power Sources 2021;488:229452.

[315]

Lukatskaya MR, Bak SM, Yu XQ, Yang XQ, Barsoum MW, Gogotsi Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater 2015;5:1500589.

[316]

Hu MM, Li ZJ, Hu T, Zhu SH, Zhang C, Wang XH. High-capacitance mechanism for Ti3C2TX MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 2016;10:11344–50.

[317]

Xu SK, Wei GD, Li JZ, Ji Y, Klyui N, Izotov V, et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem Eng J 2017;317:1026–36.

[318]

Wang XY, Fu QS, Wen J, Ma XZ, Zhu CC, Zhang XT, et al. 3D Ti3C2Tx aerogels with enhanced surface area for high performance supercapacitors. Nanoscale 2018;10:20828–35.

[319]

Hu MM, Hu T, Cheng RF, Yang JX, Cui C, Zhang C, et al. MXene-coated silk-derive d carbon cloth toward flexible electrode for supercapacitor application. J Energy Chem 2018;27:161–6.

[320]

Zhang CF, Anasori B, Seral-Ascaso A, Park SH, McEvoy N, Shmeliov A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 2017;29:1702678.

[321]

Lukatskaya MR, Kota S, Lin ZF, Zhao MQ, Shpigel N, Levi MD, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2017;2:17105.

[322]

Dall'Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 2014;48:118–22.

[323]

Li J, Yuan XT, Lin C, Yang YQ, Xu L, Du X, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 2017;7:1602725.

[324]

Mashtalir O, Lukatskaya MR, Kolesnikov AI, Raymundo-Pinero E, Naguib M, Barsoum MW, et al. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 2016;8:9128–33.

[325]

Fu QS, Wen J, Zhang N, Wu LL, Zhang MY, Lin SY, et al. Free-standing Ti3C2Tx electrode with ultrahigh volumetric capacitance. RSC Adv 2017;7:11998–2005.

[326]

Wen YY, Rufford TE, Chen XZ, Li N, Lyu MQ, Dai LM, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017;38:368–76.

[327]

Yang CH, Que WX, Yin XT, Tian YP, Yang YW, Que MD. Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta 2017;225:416–24.

[328]

Tang Y, Zhu JF, Yang CH, Wang F. Enhanced capacitive performance based on diverse layered structure of two-dimensional Ti3C2 MXene with long etching time. J Electrochem Soc 2016;163:A1975-82.

[329]

Come J, Xie Y, Naguib M, Jesse S, Kalinin SV, Gogotsi Y, et al. Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes. Adv Energy Mater 2016;6:1502290.

[330]

Shpigel N, Lukatskaya MR, Sigalov S, Ren CE, Nayak P, Levi MD, et al. In situ monitoring of Gravimetric and viscoelastic changes in 2D intercalation electrodes. ACS Energy Lett 2017;2:1407–15.

[331]

Wu CW, Unnikrishnan B, Chen IWP, Harroun SG, Chang HT, Huang CC. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater 2020;25:563–71.

[332]

Zhu MS, Huang Y, Deng QH, Zhou J, Pei ZX, Xue Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 2016;6:1600969.

[333]

Boota M, Pasini M, Galeotti F, Porzio W, Zhao MQ, Halim J, et al. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chem Mater 2017;29:2731–8.

[334]

Zhou ZH, Panatdasirisuk W, Mathis TS, Anasori B, Lu CH, Zhang XX, et al. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale 2018;10:6005–13.

[335]

Zang XN, Shen CW, Kao E, Warren R, Zhang RP, Teh KS, et al. Titanium disulfide coated carbon nanotube hybrid electrodes enable high energy density symmetric pseudocapacitors. Adv Mater 2018;30:1704754.

[336]

Dall'Agnese Y, Rozier P, Taberna PL, Gogotsi Y, Simon P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J Power Sources 2016;306:510–5.

[337]

Wang ZY, Qin S, Seyedin S, Zhang JZ, Wang JT, Levitt A, et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018;14:1802225.

[338]

Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suarez AM, et al. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Advanced Electronic Materials 2018;4:1700339.

[339]

Fu JJ, Yun JM, Wu SX, Li L, Yu LT, Kim KH. Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 2018;10:34212–21.

[340]

Wang Y, Dou H, Wang J, Ding B, Xu YL, Chang Z, et al. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 2016;327:221–8.

[341]

Li H, Musharavati F, Zalenezhad E, Chen X, Hui KN, Hui KS. Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim Acta 2018;261:178–87.

[342]

Zheng JL, Pan X, Huang XM, Xiong DB, Shang Y, Li XX, et al. Integrated NiCo2-LDHs@MXene/rGO aerogel: componential and structural engineering towards enhanced performance stability of hybrid supercapacitor. Chem Eng J 2020;396:125197.

[343]

Zhang XF, Liu Y, Dong SL, Ye ZY, Wei YD. Low-temperature synthesized nanocomposites with amorphous FeOOH on Ti3C2Tx for supercapacitors. J Alloys Compd 2018;744:507–15.

[344]

Yuan WY, Cheng LF, Zhang BX, Wu H. 2D-Ti3C2 as hard, conductive substrates to enhance the electrochemical performance of MnO2 for supercapacitor applications. Ceram Int 2018;44:17539–43.

[345]

Zou R, Quan HY, Pan MH, Zhou S, Chen DZ, Luo XB. Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 nanocomposite as negative electrode material for supercapacitors. Electrochim Acta 2018;292:31–8.

[346]

Xia QX, Fu JJ, Yun JM, Mane RS, Kim KH. High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Adv 2017;7:11000–11.

[347]

Krishnamoorthy K, Pazhamalai P, Sahoo S, Kim SJ. Titanium carbide sheet based high performance wire type solid state supercapacitors. J Mater Chem 2017;5:5726–36.

[348]

Zhang XF, Liu YF, Dong SL, Yang JQ, Liu XD. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance. Electrochim Acta 2019;294:233–9.

[349]

Hu QK, Sun DD, Wu QH, Wang HY, Wang LB, Liu BZ, et al. MXene: a new family of promising hydrogen storage medium. J Phys Chem A 2013;117:14253–60.

[350]

Zang L, Sun WY, Liu S, Huang YK, Yuan HT, Tao ZL, et al. Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl Mater Interfaces 2018;10:19598–604.

[351]

Wang S, Du YL, Liao WH, Sun ZM. Hydrogen adsorption, dissociation and diffusion on two-dimensional Ti2C monolayer. Int J Hydrogen Energy 2017;42:27214–9.

[352]

Li YM, Guo YL, Chen WG, Jiao ZY, Ma SH. Reversible hydrogen storage behaviors of Ti2N MXenes predicted by first-principles calculations. J Mater Sci 2019;54:493–505.

[353]

Kong QQ, Zhang HH, Yuan ZL, Liu JM, Li LX, Fan YP, et al. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: catalysis for hydrogen storage in MgH2. ACS Sustainable Chem Eng 2020;8:4755–63.

[354]

Zhu W, Panda S, Lu C, Ma ZW, Khan D, Dong JJ, et al. Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl Mater Interfaces 2020;12:50333–43.

[355]

Liu YN, Gao HG, Zhu YF, Li SY, Zhang JG, Li LQ. Excellent catalytic activity of a two-dimensional Nb4C3Tx (MXene) on hydrogen storage of MgH2. Appl Surf Sci 2019;493:431–40.

Journal of Materiomics
Pages 1067-1112
Cite this article:
Xiao Z, Xiao X, Kong LB, et al. MXenes and MXene-based composites for energy conversion and storage applications. Journal of Materiomics, 2023, 9(6): 1067-1112. https://doi.org/10.1016/j.jmat.2023.04.013

240

Views

15

Crossref

13

Web of Science

17

Scopus

Altmetrics

Received: 21 March 2023
Revised: 25 April 2023
Accepted: 27 April 2023
Published: 08 June 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return