Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods of perovskite-type oxides in their application background of water oxidation electrocatalysis. Then, we summarize the recent research advances of perovskite-type water oxidation electrocatalysts in alkaline and acidic media, and highlight the significance of their structure-activity relationship and activation/deactivation mechanism. Finally, challenges and the corresponding solutions for the perovskite-type electrocatalysts are highlighted, which is expected to open the opportunities to their practical applications.
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
Trenberth K E, Cheng L J, Jacobs P, Zhang Y X, Fasullo J. Hurricane harvey links to ocean heat content and climate change adaptation[J]. Earth’s Future, 2018, 6(5): 730-744.
Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590.
Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nat. Mater., 2017, 16(1): 16-22.
Yan Z F, Hitt J L, Turner J A, Mallouk T E. Renewable electricity storage using electrolysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(23): 12558-12563.
De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.
Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: An updated review[J]. Energy Sustain. Dev., 2010, 14(4): 302-314.
Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis[J]. Science, 2017, 358(6364): 751-756.
Rose G. Ueber einige neue Mineralien des Urals[J]. J. Prakt. Chem., 2010, 19(1): 459-468.
Chakhmouradian A R, Woodward P M. Celebrating 175 years of perovskite research: A tribute to Roger H. Mitchell[J]. Phys Chem Miner, 2014, 41(6): 387-391.
Von Hippel A, Breckenridge R G, Chesley F G, Tisza L. High dielectric constant ceramics[J]. Ind. Eng. Chem., 1946, 6(4): 238-251.
Bednorz J G, Müller K A Z. Possible high Tc supercond-uctivity in the Ba-La-Cu-O system[J]. Z. Phys. B-Condensed Matter., 1986, 64(2): 189-193.
Jonker G H, Santen J. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica, 1950, 16(3): 337-349.
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
Meadowcroft D B. Low-cost oxygen electrode material[J]. Nature, 1970, 226(5248): 847-848.
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385.
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
Xu X M, Zhong Y J, Shao Z P. Double perovskites in ca-talysis, electrocatalysis, and photo(electro)catalysis[J]. Trends Chem., 2019, 1(4): 410-424.
Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.
Xu X M, Pan Y L, Zhong Y J, Ran R, Shao Z P. Ruddlesden-popper perovskites in electrocatalysis[J]. Mater. Ho-rizons, 2020, 7(10): 2519-2565.
Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides[J]. Chem. Rev., 2001, 101(7): 1981-2017.
Rodríguez-Carvajal J, Hennion M, Moussa F, Mouden A H, Pinsard L, Revcolevschi A. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3[J]. Phys. Rev. B, 1998, 57(6): R3189-R3192.
David W I F, Harrison W T A, Gunn J M F, Moze O, Soper A K, Day P, Jorgensen J D, Hinks D G, Beno M A, Soderholm L, Capone Ii D W, Schuller I K, Segre C U, Zhang K, Grace J D. Structure and crystal chemistry of the high-Tc superconductor YBa2Cu3O7-x[J]. Nature, 1987, 327(6120): 310-312.
Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S. Covalency-reinforced oxygen evolution reaction catalyst[J]. Nat. Commun., 2015, 6: 8249.
Koo B, Kim K, Kim J K, Kwon H, Han J W, Jung W. Sr segregation in perovskite oxides: Why it happens and how it exists[J]. Joule, 2018, 2(8): 1476-1499.
Goldschmidt V M. Die Gesetze der Krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.
King G, Woodward P M. Cation ordering in perovskites[J]. J. Mater. Chem., 2010, 20(28): 5785-5796.
Ruddlesden S N, Popper P. The compound Sr3Ti2O7 and its structure[J]. Acta Cryst., 1958, 11(1): 54-55.
Dylla M T, Kang S D, Snyder G J. Effect of two-dimensional crystal orbitals on fermi surfaces and electron transport in three-dimensional perovskite oxides[J]. Angew. Chem. Int. Ed., 2019, 58(17): 5503-5512.
Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sánchez F, Fontcuberta J. Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films[J]. Nat. Commun., 2012, 3: 1189.
Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat. Chem., 2011, 3(7): 546-550.
Lee Y L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy Environ. Sci., 2011, 4(10): 3966-3970.
Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Zhou J G, Shao-Horn Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nat. Commun., 2013, 4: 2439.
Hong W T, Stoerzinger K A, Lee Y L, Giordano L, Grimaud A, Johnson A M, Hwang J, Crumlin E J, Yang W L, Shao-Horn Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides[J]. Energy Environ. Sci., 2017, 10(10): 2190-2200.
Hong W T, Stoerzinger K A, Moritz B, Devereaux T P, Yang W L, Shao-Horn Y. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy[J]. J. Phys. Chem. C, 2015, 119(4): 2063-2072.
Calle-Vallejo F, Inoglu N G, Su H Y, Martinez J I, Man I C, Koper M T M, Kitchin J R, Rossmeisl J. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides[J]. Chem. Sci., 2013, 4(3): 1245-1249.
Gerischer H. Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach[J]. J. Phys. Chem., 1991, 95(3): 1356-1359.
Zaanen J, Sawatzky G A, Allen J W. Band gaps and electronic structure of transition-metal compounds[J]. Phys. Rev. Lett., 1985, 55(4): 418-421.
Portier J, Poizot P, Tarascon J M, Campet G, Subramanian M. Acid-base behavior of oxides and their electronic structure[J]. Solid State Sci., 2003, 5(5): 695-699.
Bockris J O, Otagawa T. The electrocatalysis of oxygen evolution on perovskites[J]. J. Electrochem. Soc., 1984, 131(2): 290-302.
Kumar V, Kumar R, Shukla D K, Gautam S, Chae K H, Kumar R. Electronic structure and electrical transport properties of LaCo1-xNixO3 (0≤ x ≤0.5)[J]. J. Appl. Phys., 2013, 114(7): 073704.
Diaz-Morales O, Raaijman S, Kortlever R, Kooyman P J, Wezendonk T, Gascon J, Fu W T, Koper M T M. Iridium-based double perovskites for efficient water oxidation in acid media[J]. Nat. Commun., 2016, 7: 12363.
Liu H, Ding X F, Wang L X, Ding D, Zhang S H, Yuan G L. Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst[J]. Electrochim. Acta, 2018, 259:1004-1010.
Xu X M, Su C, Zhou W, Zhu Y L, Chen Y B, Shao Z P. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Sci., 2016, 3(2): 1500187.
Miao Y F, Wang X T, Zhang H J, Zhang T Y, Wei N, Liu X M, Chen Y T, Chen J, Zhao Y X. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97.
Zeng J, Bi L Y, Cheng Y H, Xu B M, Jen A K Y. Self-ass-embled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability[J]. Nano Res. Energy, 2022, 1: e9120004.
Wang H, Wang L, Luo Q S, Zhang J, Wang C T, Ge X, Zhang W, Xiao F S. Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons[J]. Chem. Synth., 2022, 2(1): 2.
Li Q, Wu J B, Wu T, Jin H R, Zhang N, Li J, Liang W X, Liu M L, Huang L, Zhou J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution[J]. Adv. Funct. Mater., 2021, 31(38): 2102002.
Jin C, Cao X C, Zhang L Y, Zhang C, Yang R Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. J. Power Sources, 2013, 241: 225-230.
Yu L J, Xu N, Zhu T L, Xu Z L, Sun M Z, Geng D. La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst[J]. Int. J. Hydrogen Energy, 2020, 45(55): 30583-30591.
Wang Z, Li M, Liang C H, Fan L Q, Han J N, Xiong Y P. Effect of morphology on the oxygen evolution reaction for La0.8Sr0.2Co0.2Fe0.8O3-δ electrochemical catalyst in alkaline media[J]. RSC Adv., 2016, 6(73): 69251-69256.
Flaschen S S. An aqueous synthesis of barium titanate[J]. J. Am. Chem. Soc., 1955, 77(23): 6194-6194.
Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R. Composition and shape control of single-crystalline Ba1-xSrxTiO3 (x=0-1) nanocrystals via a solvothermal route[J]. J. Cryst. Growth, 2008, 310(18): 4132-4137.
Kumada N, Kyoda T, Yonesaki Y, Takei T, Kinomura N. Preparation of KNbO3 by hydrothermal reaction[J]. Mater. Res. Bull., 2007, 42(10): 1856-1862.
Stoerzinger K A, Choi W S, Jeen H, Lee H N, Shao-Horn Y. Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films[J]. J. Phys. Chem. Lett., 2015, 6(3): 487-492.
Weber M L, Baeumer C, Mueller D N, Jin L, Jia C L, Bick D S, Waser R, Dittmann R, Valov I, Gunkel F. Ele-ctrolysis of water at atomically tailored epitaxial cobaltite surfaces[J]. Chem. Mater., 2019, 31(7): 2337-2346.
Tang R B, Nie Y F, Kawasaki J K, Kuo D Y, Petretto G, Hautier G, Rignanese G M, Shen K M, Schlom D G, Suntivich J. Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy[J]. J. Mater. Chem. A, 2016, 4(18): 6831-6836.
Wang L, Adiga P, Zhao J L, Samarakoon W S, Stoerzinger K A, Spurgeon S R, Matthews B E, Bowden M E, Sushko P V, Kaspar T C, Sterbinsky G E, Heald S M, Wang H, Wangoh L W, Wu J P, Guo E J, Qian H J, Wang J O, Varga T, Thevuthasan S, Feng Z X, Yang W L, Du Y G, Chambers S A. Understanding the electronic structure evolution of epitaxial LaNi1-xFexO3 thin films for water oxidation[J]. Nano Lett., 2021, 21(19): 8324-8331.
Ni L S, Guo R T, Fang S S, Chen J, Gao J Q, Mei Y, Zhang S, Deng W T, Zou G Q, Hou H S, Ji X B. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode[J]. eScience, 2022, 2(1): 116-124.
Li B, Li Z, Wu X, Zhu Z L. Interface functionalization in inverted perovskite solar cells: From material perspective[J]. Nano Res. Energy, 2022, 1(1): e9120011.
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
Matsumoto Y, Sato E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction[J]. Mater. Chem. Phys., 1986, 14(5): 397-426.
Kim J, Yin X, Tsao K C, Fang S H, Yang H. Ca2MN2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(42): 14646-14649.
Duan Y, Sun S N, Xi S B, Ren X, Zhou Y, Zhang G L, Yang H T, Du Y H, Xu Z C J. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction[J]. Chem. Mater., 2017, 29(24): 10534-10541.
Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.
Hua B, Li M, Pang W Y, Tang W Q, Zhao S L, Jin Z H, Zeng Y M, Amirkhiz B S, Luo J L. Activating p-blocking centers in perovskite for efficient water splitting[J]. Chem, 2018, 4(12): 2902-2916.
Cao C, Shang C Y, Li X, Wang Y Y, Liu C X, Wang X Y, Zhou S M, Zeng J. Dimensionality control of electrocatalytic activity in perovskite nickelates[J]. Nano Lett., 2020, 20(4): 2837-2842.
Dai J, Zhu Y L, Zhong Y J, Miao J, Lin B W, Zhou W, Shao Z P. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing[J]. Adv. Mater. Interfaces, 2019, 6(1): 1801317.
Zhou S M, Miao X B, Zhao X, Ma C, Qiu Y H, Hu Z P, Zhao J Y, Shi L, Zeng J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition[J]. Nat. Commun., 2016, 7: 11510.
Burke M S, Enman L J, Batchellor A S, Zou S H, Boett-cher S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.
Bockris J O, Otagawa T. Mechanism of oxygen evolution on perovskites[J]. J. Phys. Chem. C, 1983, 87(15): 2960-2971.
Grimaud A, Diaz-Morales O, Han B H, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
Yoo J S, Rong X, Liu Y S, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
Gao R Q, Deng M, Yan Q, Fang Z X, Li L C, Shen H Y, Chen Z F. Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction[J]. Small Methods, 2021, 5(12): 2100834.
Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16(9): 925-931.
Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.
Ouimet R J, Glenn J R, De Porcellinis D, Motz A R, Carmo M, Ayers K E. The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers[J]. ACS Catal., 2022, 12(10): 6159-6171.
Hubert M A, King L A, Jaramillo T F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers[J]. ACS Energy Lett., 2022, 7(1): 17-23.
Liu Y P, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021, 42(7): 1054-1077.
Wan G, Freeland J W, Kloppenburg J, Petretto G, Nelson J N, Kuo D Y, Sun C J, Wen J G, Diulus J T, Herman G S, Dong Y Q, Kou R H, Sun J Y, Chen S, Shen K M, Schlom D G, Rignanese G M, Hautier G, Fong D D, Feng Z X, Zhou H, Suntivich J. Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization[J]. Sci. Adv., 2021, 7(2): eabc7323.
Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Commun., 2018, 9: 5236.
Yang L, Zhang K X, Chen H, Shi L, Liang X, Wang X Y, Liu Y P, Feng Q, Liu M J, Zou X X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation[J]. J. Energy Chem., 2022, 66: 619-627.
Gao R Q, Zhang Q, Chen H, Chu X F, Li G D, Zou X X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings[J]. J. Energy Chem., 2020, 47: 291-298.
Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515.
Zhang Q, Chen H, Yang L, Liang X, Shi L, Feng Q, Zou Y C, Li G D, Zou X X. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts[J]. Chin. J. Catal., 2022, 43(3): 885-893.
Liang X, Shi L, Liu Y P, Chen H, Si R, Yan W S, Zhang Q, Li G D, Yang L, Zou X X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions[J]. An-gew. Chem. Int. Ed., 2019, 58(23): 7631-7635.
Chen H, Shi L, Liang X, Wang L N, Asefa T, Zou X X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(44): 19654-19658.
Liang X, Shi L, Cao R, Wan G, Yan W S, Chen H, Liu Y P, Zou X X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution[J]. Adv. Mater., 2020, 32(34): 2001430.
Shi L, Chen H, Liang X, Liu Y P, Zou X X. Theoretical insights into nonprecious oxygen-evolution active sites in Ti-Ir-Based perovskite solid solution electrocatalysts[J]. J. Mater. Chem. A, 2020, 8(1): 218-223.
Feng W Q, Chen H, Zhang Q, Gao R Q, Zou X X. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts[J]. Chin. J. Catal., 2020, 41(11): 1692-1697.
Zhang R H, Pearce P E, Pimenta V, Cabana J, Li H F, Dalla Corte D A, Abakumov A M, Rousse G, Giaume D, Deschamps M, Grimaud A. First example of protonation of ruddlesden-popper Sr2IrO4: A route to enhanced water oxidation catalysts[J]. Chem. Mater., 2020, 32(8): 3499-3509.
Kim B J, Abbott D F, Cheng X, Fabbri E, Nachtegaal M, Bozza F, Castelli I E, Lebedev D, Schäublin R, Copéret C, Graule T, Marzari N, Schmidt T J. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide[J]. ACS Catal., 2017, 7(5): 3245-3256.
Retuerto M, Pascual L, Calle-Vallejo F, Ferrer P, Gianolio D, Pereira A G, García Á, Torrero J, Fernández-Díaz M T, Bencok P, Peña M A, Fierro J L G, Rojas S. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nat. Commun., 2019, 10: 2041.
Hirai S, Ohno T, Uemura R, Maruyama T, Furunaka M, Fukunaga R, Chen W T, Suzuki H, Matsuda T, Yagi S. Ca1-xSrxRuO3 perovskite at the metal-insulator boundary as a highly active oxygen evolution catalyst[J]. J. Mater. Chem. A, 2019, 7(25): 15387-15394.
Ji M W, Yang X, Chang S D, Chen W X, Wang J, He D S, Hu Y, Deng Q, Sun Y, Li B, Xi J Y, Yamada T, Zhang J T, Xiao H, Zhu C Z, Li J, Li Y D. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid[J]. Nano Res., 2022, 15(3): 1959-1965.
Miao X B, Zhang L F, Wu L, Hu Z P, Shi L, Zhou S M. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nat. Commun., 2019, 10: 3809.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).