PDF (6 MB)
Collect
Submit Manuscript
Review | Open Access

Perovskite-Type Water Oxidation Electrocatalysts

Xiao LiangKe-Xin ZhangYu-Cheng ShenKe SunLei ShiHui ChenKe-Yan Zheng()Xiao-Xin Zou()
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods of perovskite-type oxides in their application background of water oxidation electrocatalysis. Then, we summarize the recent research advances of perovskite-type water oxidation electrocatalysts in alkaline and acidic media, and highlight the significance of their structure-activity relationship and activation/deactivation mechanism. Finally, challenges and the corresponding solutions for the perovskite-type electrocatalysts are highlighted, which is expected to open the opportunities to their practical applications.

References

[1]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.

[2]

Trenberth K E, Cheng L J, Jacobs P, Zhang Y X, Fasullo J. Hurricane harvey links to ocean heat content and climate change adaptation[J]. Earth’s Future, 2018, 6(5): 730-744.

[3]

Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590.

[4]

Chu S, Cui Y, Liu N. The path towards sustainable energy[J]. Nat. Mater., 2017, 16(1): 16-22.

[5]

Yan Z F, Hitt J L, Turner J A, Mallouk T E. Renewable electricity storage using electrolysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2020, 117(23): 12558-12563.

[6]

De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506.

[7]

Beaudin M, Zareipour H, Schellenberglabe A, Rosehart W. Energy storage for mitigating the variability of renewable electricity sources: An updated review[J]. Energy Sustain. Dev., 2010, 14(4): 302-314.

[8]

Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.

[9]

Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.

[10]

Hwang J, Rao R R, Giordano L, Katayama Y, Yu Y, Shao-Horn Y. Perovskites in catalysis and electrocatalysis[J]. Science, 2017, 358(6364): 751-756.

[11]

Rose G. Ueber einige neue Mineralien des Urals[J]. J. Prakt. Chem., 2010, 19(1): 459-468.

[12]

Chakhmouradian A R, Woodward P M. Celebrating 175 years of perovskite research: A tribute to Roger H. Mitchell[J]. Phys Chem Miner, 2014, 41(6): 387-391.

[13]
Ortega-San-Martin L. Introduction to perovskites: A historical perspective[M]. New York: Springer, 2020. 1-41.
[14]

Von Hippel A, Breckenridge R G, Chesley F G, Tisza L. High dielectric constant ceramics[J]. Ind. Eng. Chem., 1946, 6(4): 238-251.

[15]

Bednorz J G, Müller K A Z. Possible high Tc supercond-uctivity in the Ba-La-Cu-O system[J]. Z. Phys. B-Condensed Matter., 1986, 64(2): 189-193.

[16]

Jonker G H, Santen J. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica, 1950, 16(3): 337-349.

[17]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.

[18]

Meadowcroft D B. Low-cost oxygen electrode material[J]. Nature, 1970, 226(5248): 847-848.

[19]

Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385.

[20]

Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.

[21]

Xu X M, Zhong Y J, Shao Z P. Double perovskites in ca-talysis, electrocatalysis, and photo(electro)catalysis[J]. Trends Chem., 2019, 1(4): 410-424.

[22]

Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.

[23]

Xu X M, Pan Y L, Zhong Y J, Ran R, Shao Z P. Ruddlesden-popper perovskites in electrocatalysis[J]. Mater. Ho-rizons, 2020, 7(10): 2519-2565.

[24]

Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides[J]. Chem. Rev., 2001, 101(7): 1981-2017.

[25]
George G. Fundamentals of perovskite oxides: Synthesis, structure, properties and applications[M]. Boca Raton: CRC Press, 2020.
[26]
Tilley R. Perovskites structure-property relationships[M]. Chichester: John Wiley & Sons, 2016: 1-315.
[27]

Rodríguez-Carvajal J, Hennion M, Moussa F, Mouden A H, Pinsard L, Revcolevschi A. Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3[J]. Phys. Rev. B, 1998, 57(6): R3189-R3192.

[28]

David W I F, Harrison W T A, Gunn J M F, Moze O, Soper A K, Day P, Jorgensen J D, Hinks D G, Beno M A, Soderholm L, Capone Ii D W, Schuller I K, Segre C U, Zhang K, Grace J D. Structure and crystal chemistry of the high-Tc superconductor YBa2Cu3O7-x[J]. Nature, 1987, 327(6120): 310-312.

[29]

Yagi S, Yamada I, Tsukasaki H, Seno A, Murakami M, Fujii H, Chen H, Umezawa N, Abe H, Nishiyama N, Mori S. Covalency-reinforced oxygen evolution reaction catalyst[J]. Nat. Commun., 2015, 6: 8249.

[30]

Koo B, Kim K, Kim J K, Kwon H, Han J W, Jung W. Sr segregation in perovskite oxides: Why it happens and how it exists[J]. Joule, 2018, 2(8): 1476-1499.

[31]

Goldschmidt V M. Die Gesetze der Krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485.

[32]

King G, Woodward P M. Cation ordering in perovskites[J]. J. Mater. Chem., 2010, 20(28): 5785-5796.

[33]

Ruddlesden S N, Popper P. The compound Sr3Ti2O7 and its structure[J]. Acta Cryst., 1958, 11(1): 54-55.

[34]

Dylla M T, Kang S D, Snyder G J. Effect of two-dimensional crystal orbitals on fermi surfaces and electron transport in three-dimensional perovskite oxides[J]. Angew. Chem. Int. Ed., 2019, 58(17): 5503-5512.

[35]

Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino F, Magnano E, Sánchez F, Fontcuberta J. Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films[J]. Nat. Commun., 2012, 3: 1189.

[36]

Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat. Chem., 2011, 3(7): 546-550.

[37]

Lee Y L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy Environ. Sci., 2011, 4(10): 3966-3970.

[38]

Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Zhou J G, Shao-Horn Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nat. Commun., 2013, 4: 2439.

[39]

Hong W T, Stoerzinger K A, Lee Y L, Giordano L, Grimaud A, Johnson A M, Hwang J, Crumlin E J, Yang W L, Shao-Horn Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides[J]. Energy Environ. Sci., 2017, 10(10): 2190-2200.

[40]

Hong W T, Stoerzinger K A, Moritz B, Devereaux T P, Yang W L, Shao-Horn Y. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy[J]. J. Phys. Chem. C, 2015, 119(4): 2063-2072.

[41]

Calle-Vallejo F, Inoglu N G, Su H Y, Martinez J I, Man I C, Koper M T M, Kitchin J R, Rossmeisl J. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides[J]. Chem. Sci., 2013, 4(3): 1245-1249.

[42]

Gerischer H. Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach[J]. J. Phys. Chem., 1991, 95(3): 1356-1359.

[43]

Zaanen J, Sawatzky G A, Allen J W. Band gaps and electronic structure of transition-metal compounds[J]. Phys. Rev. Lett., 1985, 55(4): 418-421.

[44]

Portier J, Poizot P, Tarascon J M, Campet G, Subramanian M. Acid-base behavior of oxides and their electronic structure[J]. Solid State Sci., 2003, 5(5): 695-699.

[45]

Bockris J O, Otagawa T. The electrocatalysis of oxygen evolution on perovskites[J]. J. Electrochem. Soc., 1984, 131(2): 290-302.

[46]

Kumar V, Kumar R, Shukla D K, Gautam S, Chae K H, Kumar R. Electronic structure and electrical transport properties of LaCo1-xNixO3 (0≤ x ≤0.5)[J]. J. Appl. Phys., 2013, 114(7): 073704.

[47]

Diaz-Morales O, Raaijman S, Kortlever R, Kooyman P J, Wezendonk T, Gascon J, Fu W T, Koper M T M. Iridium-based double perovskites for efficient water oxidation in acid media[J]. Nat. Commun., 2016, 7: 12363.

[48]

Liu H, Ding X F, Wang L X, Ding D, Zhang S H, Yuan G L. Cation deficiency design: A simple and efficient strategy for promoting oxygen evolution reaction activity of perovskite electrocatalyst[J]. Electrochim. Acta, 2018, 259:1004-1010.

[49]

Xu X M, Su C, Zhou W, Zhu Y L, Chen Y B, Shao Z P. Co-doping strategy for developing perovskite oxides as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Sci., 2016, 3(2): 1500187.

[50]

Miao Y F, Wang X T, Zhang H J, Zhang T Y, Wei N, Liu X M, Chen Y T, Chen J, Zhao Y X. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97.

[51]

Zeng J, Bi L Y, Cheng Y H, Xu B M, Jen A K Y. Self-ass-embled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability[J]. Nano Res. Energy, 2022, 1: e9120004.

[52]

Wang H, Wang L, Luo Q S, Zhang J, Wang C T, Ge X, Zhang W, Xiao F S. Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons[J]. Chem. Synth., 2022, 2(1): 2.

[53]

Li Q, Wu J B, Wu T, Jin H R, Zhang N, Li J, Liang W X, Liu M L, Huang L, Zhou J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution[J]. Adv. Funct. Mater., 2021, 31(38): 2102002.

[54]

Jin C, Cao X C, Zhang L Y, Zhang C, Yang R Z. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. J. Power Sources, 2013, 241: 225-230.

[55]

Yu L J, Xu N, Zhu T L, Xu Z L, Sun M Z, Geng D. La0.4Sr0.6Co0.7Fe0.2Nb0.1O3-δ perovskite prepared by the sol-gel method with superior performance as a bifunctional oxygen electrocatalyst[J]. Int. J. Hydrogen Energy, 2020, 45(55): 30583-30591.

[56]

Wang Z, Li M, Liang C H, Fan L Q, Han J N, Xiong Y P. Effect of morphology on the oxygen evolution reaction for La0.8Sr0.2Co0.2Fe0.8O3-δ electrochemical catalyst in alkaline media[J]. RSC Adv., 2016, 6(73): 69251-69256.

[57]

Flaschen S S. An aqueous synthesis of barium titanate[J]. J. Am. Chem. Soc., 1955, 77(23): 6194-6194.

[58]

Wei X, Xu G, Ren Z H, Wang Y G, Shen G, Han G R. Composition and shape control of single-crystalline Ba1-xSrxTiO3 (x=0-1) nanocrystals via a solvothermal route[J]. J. Cryst. Growth, 2008, 310(18): 4132-4137.

[59]

Kumada N, Kyoda T, Yonesaki Y, Takei T, Kinomura N. Preparation of KNbO3 by hydrothermal reaction[J]. Mater. Res. Bull., 2007, 42(10): 1856-1862.

[60]

Stoerzinger K A, Choi W S, Jeen H, Lee H N, Shao-Horn Y. Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films[J]. J. Phys. Chem. Lett., 2015, 6(3): 487-492.

[61]

Weber M L, Baeumer C, Mueller D N, Jin L, Jia C L, Bick D S, Waser R, Dittmann R, Valov I, Gunkel F. Ele-ctrolysis of water at atomically tailored epitaxial cobaltite surfaces[J]. Chem. Mater., 2019, 31(7): 2337-2346.

[62]

Tang R B, Nie Y F, Kawasaki J K, Kuo D Y, Petretto G, Hautier G, Rignanese G M, Shen K M, Schlom D G, Suntivich J. Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy[J]. J. Mater. Chem. A, 2016, 4(18): 6831-6836.

[63]

Wang L, Adiga P, Zhao J L, Samarakoon W S, Stoerzinger K A, Spurgeon S R, Matthews B E, Bowden M E, Sushko P V, Kaspar T C, Sterbinsky G E, Heald S M, Wang H, Wangoh L W, Wu J P, Guo E J, Qian H J, Wang J O, Varga T, Thevuthasan S, Feng Z X, Yang W L, Du Y G, Chambers S A. Understanding the electronic structure evolution of epitaxial LaNi1-xFexO3 thin films for water oxidation[J]. Nano Lett., 2021, 21(19): 8324-8331.

[64]

Ni L S, Guo R T, Fang S S, Chen J, Gao J Q, Mei Y, Zhang S, Deng W T, Zou G Q, Hou H S, Ji X B. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode[J]. eScience, 2022, 2(1): 116-124.

[65]

Li B, Li Z, Wu X, Zhu Z L. Interface functionalization in inverted perovskite solar cells: From material perspective[J]. Nano Res. Energy, 2022, 1(1): e9120011.

[66]

Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.

[67]

Matsumoto Y, Sato E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction[J]. Mater. Chem. Phys., 1986, 14(5): 397-426.

[68]

Kim J, Yin X, Tsao K C, Fang S H, Yang H. Ca2MN2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(42): 14646-14649.

[69]

Duan Y, Sun S N, Xi S B, Ren X, Zhou Y, Zhang G L, Yang H T, Du Y H, Xu Z C J. Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction[J]. Chem. Mater., 2017, 29(24): 10534-10541.

[70]

Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.

[71]

Hua B, Li M, Pang W Y, Tang W Q, Zhao S L, Jin Z H, Zeng Y M, Amirkhiz B S, Luo J L. Activating p-blocking centers in perovskite for efficient water splitting[J]. Chem, 2018, 4(12): 2902-2916.

[72]

Cao C, Shang C Y, Li X, Wang Y Y, Liu C X, Wang X Y, Zhou S M, Zeng J. Dimensionality control of electrocatalytic activity in perovskite nickelates[J]. Nano Lett., 2020, 20(4): 2837-2842.

[73]

Dai J, Zhu Y L, Zhong Y J, Miao J, Lin B W, Zhou W, Shao Z P. Enabling high and stable electrocatalytic activity of iron-based perovskite oxides for water splitting by combined bulk doping and morphology designing[J]. Adv. Mater. Interfaces, 2019, 6(1): 1801317.

[74]

Zhou S M, Miao X B, Zhao X, Ma C, Qiu Y H, Hu Z P, Zhao J Y, Shi L, Zeng J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition[J]. Nat. Commun., 2016, 7: 11510.

[75]

Burke M S, Enman L J, Batchellor A S, Zou S H, Boett-cher S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.

[76]

Bockris J O, Otagawa T. Mechanism of oxygen evolution on perovskites[J]. J. Phys. Chem. C, 1983, 87(15): 2960-2971.

[77]

Grimaud A, Diaz-Morales O, Han B H, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.

[78]

Yoo J S, Rong X, Liu Y S, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.

[79]

Gao R Q, Deng M, Yan Q, Fang Z X, Li L C, Shen H Y, Chen Z F. Structural variations of metal oxide-based electrocatalysts for oxygen evolution reaction[J]. Small Methods, 2021, 5(12): 2100834.

[80]

Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16(9): 925-931.

[81]

Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.

[82]

Ouimet R J, Glenn J R, De Porcellinis D, Motz A R, Carmo M, Ayers K E. The role of electrocatalysts in the development of gigawatt-scale PEM electrolyzers[J]. ACS Catal., 2022, 12(10): 6159-6171.

[83]

Hubert M A, King L A, Jaramillo T F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers[J]. ACS Energy Lett., 2022, 7(1): 17-23.

[84]

Liu Y P, Liang X, Chen H, Gao R Q, Shi L, Yang L, Zou X X. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chin. J. Catal., 2021, 42(7): 1054-1077.

[85]

Wan G, Freeland J W, Kloppenburg J, Petretto G, Nelson J N, Kuo D Y, Sun C J, Wen J G, Diulus J T, Herman G S, Dong Y Q, Kou R H, Sun J Y, Chen S, Shen K M, Schlom D G, Rignanese G M, Hautier G, Fong D D, Feng Z X, Zhou H, Suntivich J. Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization[J]. Sci. Adv., 2021, 7(2): eabc7323.

[86]

Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Commun., 2018, 9: 5236.

[87]

Yang L, Zhang K X, Chen H, Shi L, Liang X, Wang X Y, Liu Y P, Feng Q, Liu M J, Zou X X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation[J]. J. Energy Chem., 2022, 66: 619-627.

[88]

Gao R Q, Zhang Q, Chen H, Chu X F, Li G D, Zou X X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings[J]. J. Energy Chem., 2020, 47: 291-298.

[89]

Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515.

[90]

Zhang Q, Chen H, Yang L, Liang X, Shi L, Feng Q, Zou Y C, Li G D, Zou X X. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts[J]. Chin. J. Catal., 2022, 43(3): 885-893.

[91]

Liang X, Shi L, Liu Y P, Chen H, Si R, Yan W S, Zhang Q, Li G D, Yang L, Zou X X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions[J]. An-gew. Chem. Int. Ed., 2019, 58(23): 7631-7635.

[92]

Chen H, Shi L, Liang X, Wang L N, Asefa T, Zou X X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts[J]. Angew. Chem. Int. Ed., 2020, 59(44): 19654-19658.

[93]

Liang X, Shi L, Cao R, Wan G, Yan W S, Chen H, Liu Y P, Zou X X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution[J]. Adv. Mater., 2020, 32(34): 2001430.

[94]

Shi L, Chen H, Liang X, Liu Y P, Zou X X. Theoretical insights into nonprecious oxygen-evolution active sites in Ti-Ir-Based perovskite solid solution electrocatalysts[J]. J. Mater. Chem. A, 2020, 8(1): 218-223.

[95]

Feng W Q, Chen H, Zhang Q, Gao R Q, Zou X X. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts[J]. Chin. J. Catal., 2020, 41(11): 1692-1697.

[96]

Zhang R H, Pearce P E, Pimenta V, Cabana J, Li H F, Dalla Corte D A, Abakumov A M, Rousse G, Giaume D, Deschamps M, Grimaud A. First example of protonation of ruddlesden-popper Sr2IrO4: A route to enhanced water oxidation catalysts[J]. Chem. Mater., 2020, 32(8): 3499-3509.

[97]

Kim B J, Abbott D F, Cheng X, Fabbri E, Nachtegaal M, Bozza F, Castelli I E, Lebedev D, Schäublin R, Copéret C, Graule T, Marzari N, Schmidt T J. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide[J]. ACS Catal., 2017, 7(5): 3245-3256.

[98]

Retuerto M, Pascual L, Calle-Vallejo F, Ferrer P, Gianolio D, Pereira A G, García Á, Torrero J, Fernández-Díaz M T, Bencok P, Peña M A, Fierro J L G, Rojas S. Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media[J]. Nat. Commun., 2019, 10: 2041.

[99]

Hirai S, Ohno T, Uemura R, Maruyama T, Furunaka M, Fukunaga R, Chen W T, Suzuki H, Matsuda T, Yagi S. Ca1-xSrxRuO3 perovskite at the metal-insulator boundary as a highly active oxygen evolution catalyst[J]. J. Mater. Chem. A, 2019, 7(25): 15387-15394.

[100]

Ji M W, Yang X, Chang S D, Chen W X, Wang J, He D S, Hu Y, Deng Q, Sun Y, Li B, Xi J Y, Yamada T, Zhang J T, Xiao H, Zhu C Z, Li J, Li Y D. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid[J]. Nano Res., 2022, 15(3): 1959-1965.

[101]

Miao X B, Zhang L F, Wu L, Hu Z P, Shi L, Zhou S M. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation[J]. Nat. Commun., 2019, 10: 3809.

Journal of Electrochemistry
Article number: 2214004
Cite this article:
Liang X, Zhang K-X, Shen Y-C, et al. Perovskite-Type Water Oxidation Electrocatalysts. Journal of Electrochemistry, 2022, 28(9): 2214004. https://doi.org/10.13208/j.electrochem.2214004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return