The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods of perovskite-type oxides in their application background of water oxidation electrocatalysis. Then, we summarize the recent research advances of perovskite-type water oxidation electrocatalysts in alkaline and acidic media, and highlight the significance of their structure-activity relationship and activation/deactivation mechanism. Finally, challenges and the corresponding solutions for the perovskite-type electrocatalysts are highlighted, which is expected to open the opportunities to their practical applications.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Review
Issue
Journal of Electrochemistry 2022, 28(9): 2214004
Published: 23 August 2022
Downloads:11
Total 1